• Title/Summary/Keyword: PKA

Search Result 173, Processing Time 0.02 seconds

Optimization and Characterization of Conditions for Cellulose-degrading Crude Enzymes Produced by Cellulophaga lytica PKA 1005 (Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Kim, Bo-Ram;Park, Hong-Min;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.18-24
    • /
    • 2014
  • This study was conducted to investigate optimum conditions for the production of cellulose-degrading crude enzymes by an isolated marine bacterium. A marine microorganism producing an extracellular cellulose-degrading enzyme was isolated from the red seaweed, Grateloupia elliptica Holmes. The isolated bacterium was identified as Cellulophaga lytica by 16S ribosomal RNA gene sequence analysis and physiological profiling and designated as Cellulophaga lytica PKA 1005. The optimum conditions for the growth of Cellulophaga lytica PKA 1005 were pH 7, 2% NaCl, and $30^{\circ}C$ with 36 h incubation time. To obtain the crude enzyme, the culture medium of the strain was centrifuged for 30 min at $12,000{\times}g$ and $4^{\circ}C$, and the supernatant was used as crude enzyme. The optimum conditions for the production of the cellulose-degrading crude enzyme were pH 8, $35^{\circ}C$, 8% carboxyl methyl cellulose, and 60 h reaction time.

Medicarpin induces lipolysis via activation of Protein Kinase A in brown adipocytes

  • Imran, Khan Mohammad;Yoon, Dahyeon;Lee, Tae-Jin;Kim, Yong-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.249-254
    • /
    • 2018
  • Natural pterocarpan Medicarpin (Med) has been shown to have various beneficial biological roles, including inhibition of osteoclastogenesis, stimulation of bone regeneration and induction of apoptosis. However, the effect of the Med on lipolysis in adipocytes has not been reported. Here, we show the effect of Med on lipolysis in different mouse adipocytes and elucidate the underlying mechanism. We observed that Med treatment promoted release of glycerol in the media. Differentiated mouse brown adipose tissue cells were treated with Med. RNA-Seq analysis was performed to elucidate the effect of med and subsequently was confirmed by qRT-PCR and western blotting analyses. Med treatment increased both protein and gene expression levels of hormone-sensitive lipase (Hsl) and adipose triglyceride lipase (Atgl), which are two critical enzymes necessary for lipolysis. Mechanistic study showed that Med activates Protein Kinase A (PKA) and phosphorylates Hsl at PKA target position at $Serine^{660}$. Silencing of PKA gene by short interfering RNA attenuated the Med-induced increase in glycerol release and Hsl phosphorylation. The results unveil that Med boosts lipolysis via a PKA-dependent pathway in adipocytes and may provide a possible avenue of further research of Med mediated reduction of body fat.

Predominant $D_1$ Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

  • Hu, Zhenzhen;Oh, Eun-Hye;Chung, Yeon Bok;Hong, Jin Tae;Oh, Ki-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.89-97
    • /
    • 2015
  • The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the $3^{rd}$ day. CART peptides were over-expressed on the $5^{th}$ day in the striata of behaviorally sensitized mice. A higher proportion of $CART^+$ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both $D_1R$ and $D_2R$ antagonists, SCH 23390 ($D_1R$ selective) and raclopride ($D_2R$ selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/ protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both $D_1R$ and $D_2R$ knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the $D_1R$-KO mice, but not in the $D_2R$-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by $D_1R$.

Cordycepin (3'-deoxyadenosine) Has an Anti-platelet Effect by Regulating the cGMP-Associated Pathway of Human Platelet Activation

  • Cho, Hyun-Jeong;Rhee, Man-Hee;Cho, Jae-Youl;Kim, Hyeong-Soo;Ok, Woo-Jeong;Kang, Hee-Jin;Park, Hwa-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine), which comes from Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is used in the treatment of various diseases such as cancer and chronic inflammation. We recently reported that cordycepin has a novel antiplatelet effect through the down regulation of $[Ca^{2+}]_{i}$ and the elevation of cGMP/cAMP production. In this study, we further investigated the effect of cordycepin on collagen-induced platelet aggregation in the presence of cGMP-dependent protein kinase (PKG)- or cAMP-dependent protein kinase (PKA)-inhibitor. PKG inhibitor Rp-8-pCPT-cGMPS potentiated the collagen-induced platelet aggregation, but PKA inhibitor Rp-8-Br-cAMPS did not. However, both Rp-8-pCPT-cGMPS and Rp-8-Br-cAMPS reduced inhibition by cordycepin of collagen-induced platelet aggregation. Moreover, cordycepin inhibited $Ca^{2+}-dependent$ phosphorylation of both 47 kDa- and 20 kDa-protein in the presence of both PKG inhibitor and PKA inhibitor. Taken altogether, these results suggest that the inhibitory effect of cordycepin on collagen-induced platelet aggregation is associated with cGMP/PKG- and cAMP/PKA-pathways, and thus cordycepin may be an efficacious intervention against platelet aggregation-mediated thrombotic disease.

The PKA/CREB Pathway Is Closely Involved in VEGF Expression in Mouse Macrophages

  • Jeon, Seong-Hyun;Chae, Byung-Chul;Kim, Hyun-A;Seo, Goo-Young;Seo, Dong-Wan;Chun, Gie-Taek;Yie, Se-Won;Eom, Seok-Hyun;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Cyclic AMP-responsive element binding protein (CREB) is known to be associated with angiogenesis. In the present study we investigated the possible role of CREB in the expression of vascular endothelial growth factor (VEGF) by mouse macrophages. Over-expression of CREB increased VEGF secretion by cells of the RAW264.7 mouse macrophage cell line. It also increased the promoter activity of a mouse reporter driven by the VEGF promoter, while a dominant negative CREB (DN-CREB) abrogated the activity, suggesting that CREB mediates VEGF transcription. Forskolin, an adenylyl cyclase activator, stimulated VEGF transcription, and the PKA inhibitor H89 abolished this effect. IFN-${\gamma}$, a potent cytokine, stimulated VEGF expression only in part through the PKA-CREB pathway. These results indicate that PKA phosphorylates CREB and so induces VEGF gene expression. An analysis of mutant promoters revealed that one of the putative CREB responsive elements (CREs), at -399 ~ -388 in the promoter, is critical for CREB-mediated VEGF promoter activity, and the significance of this CRE was confirmed by chromatin immunoprecipitation assays.

Characterization of Undaria pinnatifida Root Enzymatic Extracts Using Crude Enzyme from Shewanella oneidensis PKA 1008 and Its Anti-Inflammatory Effect

  • Xu, Xiaotong;Jeong, So-Mi;Lee, Ji-Eun;Kang, Woo-Sin;Ryu, Si-Hyeong;Kim, Kwangwook;Byun, Eui-Hong;Cho, Young-Je;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • This study investigated the characterization and functionality of Undaria pinnatifida root (UPT) extracts, degraded using a crude enzyme from Shewanella oneidensis PKA1008. To obtain the optimum degrading conditions, the UPT was mixed with alginate degrading enzymes from S. oneidensis PKA 1008 and was incubated at 30℃ for 0, 3, 6, 12, 24, and 48 h. The alginate degrading ability of these enzymes was then evaluated by measuring the reducing sugar, viscosity, pH and chromaticity. Enzymatic extract at 24 h revealed the highest alginate degrading ability and the lowest pH value. As the incubation time increased, the lightness (L ) also decreased and was measured at its lowest value, 39.84, at 12 hours. The redness and yellowness increased gradually to 10.27 at 6 h and to 63.95 at 3 h, respectively. Moreover, the alginate oligosaccharides exhibited significant anti-inflammatory activity. These results indicate that a crude enzyme from S. oneidensis PKA 1008 can be used to enhance the polysaccharide degradation of UPT and the alginate oligosaccharides may also enhance the anti-inflammatory effect.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Ginsenoside Rg1 promotes neurite growth of retinal ganglion cells through cAMP/PKA/CREB pathways

  • Ye-ying Jiang ;Rong-yun Wei;Kai Tang;Zhen Wang;Ning-hua Tan
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.163-170
    • /
    • 2024
  • Background: Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods: Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results: This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion: Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.

Protein Kinase A Increases DNA-Binding Activity of Testis-Brain RNA-Binding Protein

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2008
  • Testis brain RNA-binding protein (TB-RBP) is a DNA/RNA binding protein. TB-RBP is mainly expressed in testis and brain and highly conserved protein with several functions, including chromosomal translocations, DNA repair, mitotic cell division, and mRNA transport, stabilization, and storage. In our previous study, we identified TB-RBP as an interacting partner for the catalytic subunit $(C{\alpha})$ of protein kinase A(PKA) and verified their interaction with several biochemical analyses. Here, we confirmed interaction between $C{\alpha}$. and TB-RBP in mammalian cells and determined the effect of $C{\alpha}$. on the function of TB-RBP. The activation of $C{\alpha}$. increased the TB-RBP function as a DNA-binding protein. These results suggest that the function of TB-RBP can be modulated by PKA and provide insights into the diverse role of PKA.

  • PDF

Regulation of NO from Endothelial Cells by the Decrease of Cellular cAMP Under Arsenite Exposure

  • Lee, Soo-Youn;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.392-395
    • /
    • 2008
  • In an attempt to delineate the direct effect of arsenite-induced endothelial dysfunction on nitric oxide (NO) production, confluent bovine aortic endothelial cells (BAEC) were incubated with arsenite, and endothelial NO synthase expression and NO production were measured. Exposure of arsenite decreased NO production for up to 24h. This decrease was accompanied by decreases in cAMP, protein kinase A (PKA) activity, and furthermore, significant reduction of pCREB. In conclusion, this study is the first to demonstrate that exposure of arsenite decreases NO production by a reduction of pCREB and PKA activity that may be mediated by cAMP, leading to endothelial dysfunction.