Regulation of NO from Endothelial Cells by the Decrease of Cellular cAMP Under Arsenite Exposure

  • Lee, Soo-Youn (Division of Environmental and Chemical Engineering, Chonbuk National University) ;
  • Min, Ji-Ho (Division of Environmental and Chemical Engineering, Chonbuk National University)
  • Published : 2008.02.29

Abstract

In an attempt to delineate the direct effect of arsenite-induced endothelial dysfunction on nitric oxide (NO) production, confluent bovine aortic endothelial cells (BAEC) were incubated with arsenite, and endothelial NO synthase expression and NO production were measured. Exposure of arsenite decreased NO production for up to 24h. This decrease was accompanied by decreases in cAMP, protein kinase A (PKA) activity, and furthermore, significant reduction of pCREB. In conclusion, this study is the first to demonstrate that exposure of arsenite decreases NO production by a reduction of pCREB and PKA activity that may be mediated by cAMP, leading to endothelial dysfunction.

Keywords

References

  1. Barua, R. S., J. A. Ambrose, S. Srivastava, M. C. DeVoe, and L.-J. Eales-Reynolds. 2003. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase. Circulation 107: 2342-2347 https://doi.org/10.1161/01.CIR.0000066691.52789.BE
  2. Chang, J.-S., I.-H. Yoon, and K. W. Kim. 2007. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. J. Microbiol. Biotechnol. 17: 812-821
  3. Cho, D.-H., Y. J. Choi, S. A. Jo, and I. Jo. 2004. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone. J. Biol. Chem. 279: 2499-2506 https://doi.org/10.1074/jbc.M309451200
  4. Cho, H. J., J. Y. Cho, M. H. Rhee, and H.-S. Kim. 2007. Inhibitory effects of cordyceptin (3'-deoxyadenosine), a component of Cordyeps militaris, on human platelet aggregation induced by thapsiargin. J. Microbiol. Biotechnol. 17: 1134-1138
  5. Harrison, D. G. 1997. Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest. 100: 2153-2157 https://doi.org/10.1172/JCI119751
  6. Kang, B.-H., I. Jo, S. Y. Eun, and S. A. Jo. 2003. Cyclic AMPdependent protein kinase A and CREB are involved in neuregulin-induced synapse-specific expression of acetylcholine receptor gene. Biochem. Biophys. Res. Commun. 304: 758-765 https://doi.org/10.1016/S0006-291X(03)00660-0
  7. Kim, H. J., E. Chatani, Y. Goto, and S. R. Paik. 2007. Seeddependent accelerated fibrillation of $\alpha-synuclein $ induced by periodic ultrasonication treatment. J. Microbiol. Biotechnol. 17: 2027-2032
  8. Kim, H. P., J. Y. Lee, J. K. Jeong, S. W. Bas, H. K. Lee, and I. Jo. 1999. Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor $\alpha$ localized in caveolae. Biochem. Biophys. Res. Commun. 263: 257-262 https://doi.org/10.1006/bbrc.1999.1348
  9. Kim, Y. S., J. Min, H. N. Hong, J. H. Park, K. S. Park, and M. B. Gu. 2007. Analysis of the stress effects of endocrine disrupting chemicals (EDCs) on Escherichia coli. J. Microbiol. Biotechnol. 17: 1390-1393
  10. Kubes, P., M. Suzuki, and D. N. Granger. 1991. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 95: 4651-4655
  11. Kugiyama, K., H. Yasue, K. Okumura, H. Ogawa, K. Fujimoto, K. Nakao, M. Yoshimura, T. Motoyama, Y. Inobe, and H. Kawano. 1996. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 94: 266-272 https://doi.org/10.1161/01.CIR.94.3.266
  12. Lee, M. Y., B. I. Jung, S. M. Chung, O. N. Bae, J. Y. Lee, J. D. Park, J. S. Yang, H. Lee, and J. H. Chung. 2003. Arsenicinduced dysfunction in relaxation of blood vessels. Environ. Health Perspect. 111: 513-517 https://doi.org/10.1289/ehp.5916
  13. Loscalzo, J. and G. Welch. 1995. Nitric oxide and its role in the cardiovascular system. Prog. Cardiovasc. Dis. 38: 87-104 https://doi.org/10.1016/S0033-0620(05)80001-5
  14. Min, J., Y.-M. Jin, J.-S. Moon, M.-S. Sung, S. A. Jo, and I. Jo. 2006. Hypoxia-stimulated transcriptional activation of the eNOS gene is mediated through the Tax-responsive element (TRE) in endothelial cells. Hypertension 47: 1189-1196 https://doi.org/10.1161/01.HYP.0000222892.37375.4d
  15. Niwano, K., M. Arai, N. Koitabashi, S. Hara, A. Watanabe, K. Sekiguchi, T. Tanaka, I. Iso, and M. Kurabayashi. 2006. Competitive binding of CREB and ATF2 to cAMP/ATF responsive element regulates eNOS gene expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26: 1036-1042 https://doi.org/10.1161/01.ATV.0000215179.76144.39
  16. Nordberg, G. F., T. Jin, F. Hong, A. Zhang, J. P. Buchet, and A. Bernard. 2006. Biomarkers of cadmium and arsenic interactions. Toxicol. Appl. Pharmacol. 2: 191-197
  17. Radomski, M. W., R. M. Palmer, and S. Moncada. 1987. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2: 1057-1058
  18. Tsou, T. C., F. Y. Tsai, Y. W. Hsieh, L. A. Li, S. C. Yeh, and L. W. Chang. 2005. Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol. Appl. Pharmacol. 208: 277-284 https://doi.org/10.1016/j.taap.2005.03.001
  19. Zhang, X. and T. H. Hintze. 2000. cAMP signal transduction cascade, a novel pathway for the regulation of endothelial nitric oxide production in coronary blood vessels. Arterioscler. Thromb. Vasc. Biol. 21: 797-803
  20. Zhang, X. L., H. Tada, Z. Wang, and T. H. Hintze. 2002 cAMP signal transduction, a potential compensatory pathway for coronary endothelial NO production after heart failure. Arterioscler. Thromb. Vasc. Biol. 22: 1273-1278 https://doi.org/10.1161/01.ATV.0000025429.67378.65