• Title/Summary/Keyword: PIXE

Search Result 59, Processing Time 0.027 seconds

PIXE Analysis of Aerosol Particles - Preparation of Standard Samples and Calibration Test - (PIXE 분석에 의한 대기에어로졸의 원소분석 -표준시료의 작성 및 정량화-)

  • 崔琴簒
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.114-118
    • /
    • 1991
  • Particle Induce X-Ray Emission (PIXE) analysis is one of the most useful methods which can determine the elemental concentration of aerosol particles in nano-gram range. The main purpose of this paper is to establish the measurement system and the procedure of PIXE analysis. The standard samples were prepared to calibrate the PIXE analysis by three different techniques. The linear relationships between the peak counts from PIXE spectra and the mass density from RBS spectra were obtained for each standardized element under the applied measurment geometry and conditions. The sensitivity curves for PIXE analysis were determined from these relationships.

  • PDF

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.

Evaluation of Quantitative Results of PIXE Analysis (다원소 동시분석법 PIXE법의 정량성 평가)

  • Park, Jeong-Ho;Choi, Kum-Chan
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.386-394
    • /
    • 1997
  • The standard samples for the calibration of PIXE analysis were prepared using the single element standard samples and sulfur and chlorine compounds. The diluted standard solutions were dropped on the non-hole nuclepore film and dried. Standard sample of six elements of Ca, Cr, Co, Cu, Se and Sr had close agreement between the measurement and theoretical values. According to the theoretical study about the effects of thick samples on the accuracy of the PIXE analysis, the reduction of X-ray yields in the thick sample can not be neglected for the sample thicker than $100{\mu}g/cm^2$.

  • PDF

Oprimization Study for the CRC PIXE System Beam Transport Line

  • Jeong, Cheol-Ki;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Proton Induced X-ray Emission (PIXE) is a MeV ion beam analysis method for use with particle accelerators. PIXE uses low-energy charged particles as an excitation mechanism to generate characteristic x-ray emission from each element in a target. In PIXE analysis, the beam current used is from a few nA to several tens of nA. Chosun University (Cyclotron Research Center) designed a $50{\mu}A$ beam line from the 13 MeV cyclotron for use with a PIXE analysis system, as well as performing beam transport line optimization research. In this study, the beam line operation conditions for the optimization process of beam transport and beam characteristics are shown.

Application of Microbeam Technique to Atmospheric Science

  • Ma Chang-Jin
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2005.11a
    • /
    • pp.67-74
    • /
    • 2005
  • Microbeam PIXE, often called micro-PIXE, is a powerful tool tot analyzing a wide range of elements for various samples, as well as, it has important applications of interest to the atmospheric science. In this study, qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Here, we present the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements lot various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV H+ micro beam (1-2 ${\mu}m$) accelerated by 3 MV single-end accelerator.

  • PDF

Chemical Transformation of Individual Asian Dust Particles Estimated by the Novel Double Detector System of Micro-PIXE

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • By the application of novel double detector system of micro-PIXE that can detect light elements (Z<14), we made an attempt to provide a thorough discussion on the aging processes of Asian dust (hereafter called "AD") particle by reaction with sea-slat. The elemental spectra and maps obtained from the microbeam radiation of micro-PIXE to individual AD particles were useful for fractionating AD particles into both internally and externally mixed particles. A spatial distribution of elements in a minute domain of single particle obtained by scanning the microbeam irradiation enabled us not only to estimate the chemical mixing state of individual AD particles but also to presume their aging processes in both ambient air and cloud. By calculating the normalized micro-PIXE net count of elements, it was possible to classify individual AD particles into three distinct groups (i.e., (1) Aging type 1: AD particle coated by the gaseous Cl evaporated by the reaction between artificial acids and sea salt; (2) Aging type 2: AD particle mixed with sea salt but no additional reaction with artificial acids; and (3) Non-aged type) A relatively high transformation rate (63.3-75.9%) was shown in large particles (greater than $5.1\;{\mu}m$ in diameter).

Investigation of trace elements in incisor and molar teeth from two different geographical areas in Sudan using micro-particle induced x-ray emission (µ-PIXE)

  • M.E.M. Eisa;J.A. Mars;S. Naidoo;R.A. Shibrain;K.J. Cloete;M. Maaza
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2023
  • Trace elements (TEs) have significant effects on both dental health and human health. Toxic effects are caused by deficiency or excess of TEs. This study was performed to determine levels of toxic and trace elements in incisor and molar teeth sampled from male and female participants residing in the north and south regions of Sudan. The tooth enamel of 18 extracted human teeth was analyzed using particle-induced x-ray emission (µ-PIXE) to determine its elemental profile and distribution. GeoPIXEII software package was used for the analysis of µ-PIXE data. The main elements determined were Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Zn, Co, and Sr which were homogeneously distributed in the areas of the tooth enamel mapped with micro-PIXE.

Elemental Analysis of Road Aerosols using by a PIXE Method (PIXE 분석법에 의한 도로변 분진의 원소분석)

  • 최금찬;임경택;조정구;김태형
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.523-528
    • /
    • 1996
  • Aerosol Particles were collected in a heaby traffic region in pusan. Samples were collected in two size fractions with a two-stage sampler during the day and the night. Elemental concentrations of these aerosol particles were determined by a PIXE(Proton Induced X-ray Emission) analysis method. The results suggest that the elements originating mainly from natural sources such as Si, Ca, Fe, Cl, and K are dominent in the coarse fraction, but the elements such as S, Pb, Br, and Zn are dominent in the fine fraction. Br/Pb ratio are evaluated in both coarse and fine size fraction, and which are mainly emitted automobile sources. The study further also discussed other Br/Pb ratio related works described elsewhere. Sulfur in the fine fraction was continuously increased during the sampling period without time variation.

  • PDF

A Seasonal Variation of Elemental Composition of Fine Particles in Chongju Area using PIXE (PIXE를 이용한 청주지역 미세입자 중 원소의 계절 변동 특성)

  • 강병욱;이학성;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.307-317
    • /
    • 1997
  • Samples of fine particle $(d_P<2.5 \mum)$ were taken in Chongju area using a dichotomous sampler. The data set was collected on fifty-eight different days with 24 hour sampling period from October 27, 1995 through August 25, 1996. The samples were analyzed using a proton induced x-ray emission (PIXE) for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, M, Fe, Ni, Cu, Zn, Br and Pb. Values of Fe, Ca, Si, Cu, K and Cl exhibit marked seasonal variations. Mean concentrations for this study had the following order S > Cl > Si > K > Al > Fe on fine particle. Concentrations of Ca, Si and Fe were higher during the spring season compared with any other season. These phenomena may be attributable to soil dust. Cl and K were higher in the winter, which may be explained by combustion of fossil fuel. Higher values for Cu and Zn in the Winter may be due to the combustion and incineration.

  • PDF

Setup and Atomic Calibration of Particle Induced X-ray Emission System

  • Song, Jin-Ho;Song, Jae-Bong;;Kim, Jun-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.206.2-206.2
    • /
    • 2014
  • Recently, particle induced X-ray emission (PIXE) analysis system was installed at the 2MV ion acceleration system in Korea institute science and technology (KIST). This installation is for complement to low atomic resolution of heavy atoms at Rutherford backscattering spectrometry (RBS) system. For quantitative analysis, a mass calibration of the PIXE set-up has been done with thin film standards and. The GUPIX software package has been used to process the PIXE spectra and the results are compared with the values from RBS system. Therefore, the instrumental constant H (solid angle and correction factor) is determined relying completely on the GUPIX data base (cross-sections, fluorescence and Coster-Kronig probabilities, stopping powers and attenuation coefficients) for a large set of elements. These H values can be used in future analysis.

  • PDF