• Title/Summary/Keyword: PIV technique

Search Result 318, Processing Time 0.036 seconds

Development of Stereocopic-PIV and its Application to the Measurement of the Near Wake of a Circular Cylinder (Stereocopic-PIV 개발과 원주근접 후류 계측)

  • Doh, D.H.;Kim, D.H.;Cho, G.R.;Lee, W.J.;Pyun, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.555-559
    • /
    • 2001
  • A new stereoscopic PIV is developed using two CCD cameras, stereoscopic photogrammetry, and a 3D-PTV principle. The wake of a circular cylinder is measured by the developed stereoscopic PIV technique. The B mode vortical structure of the wake over the Reynolds number 300 is clearly seen by the developed technique. The arrangement of the two cameras is based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors are based on 3D-PTV technique.

  • PDF

The Measurement of Bubble Driven Flow Using PIV and Digital Mask Technique (PIV 기법과 Digital Mask 기법을 적용한 버블유동 측정)

  • Kim, Sang-Moon;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2700-2703
    • /
    • 2008
  • An experiment on bubble-driven flow was performed in order to understand fundamental knowledge of flow structure around a rising bubble in a stagnant fluid. The measurement technique consists of a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, the digital phase separation with a masking technique and a shadowgraphy. The key point of the measurement is that the background intensity of a PIV recording can be shifted to a higher level than a bubble region using a shadowgraphy in order to distinguish from fluorescent particles and a bubble as well. Flow fields were measured without an inaccurate analysis around a fluid-bubble interface by using only one camera simply.

  • PDF

Measurement of turbulent jet flow using dynamic PIV technique (Dynamic PIV를 이용한 난류 제트유동 해석)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.36-39
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields is essential for physical understanding of a complicated turbulent flow and was obtainable using dynamic PIV because of advances of high-speed imaging technique, laser and electronics. A dynamic PIV systme consists of a high-speed CMOS camera having $1K\times1K$ pixels resolution at 1 KHz and a high-repetition Nd:Yag pulse laser. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet whose Reynolds number is about 3000. The particle images of $1024\times512$ pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

Development of a High Resolution Cinematic Particle Image Velocimetry and Its Application to measurement of Unsteady Complex Turbulent Flows (고분해능 Cinematic PIV 시스템의 개발과 비정상 복잡 난류유동측정에의 응용)

  • Kim, Kyung-Chun;Park, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.536-541
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector for a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. The correct velocity vector at the first step is found to be critical, so we apply a Multiple Correlation Validation(MCV) technique in order to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds the performance of the conventional high resolution digital PIV system using a $1K{\times}1K$ CCD camera.

  • PDF

A Study on Biased Flow Region Using PIV Technique (PIV기법을 이용한 편향흐름 발생영역 규명)

  • Na, Jeong-Heon;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.105-112
    • /
    • 1999
  • This research is an experimental investigation of the region of the Biased Flow. This experiment was carried out in a circulating water channel, and the results are analyzed by using the PIV technique. The results are presented in velocity vector field, velocity contour and vorticity contour. The results were compared with those of Zdravkovich which were carried out in a wind tunnel. These results will be very useful to verify numerical codes.

  • PDF

Quantitative Flow Field Visualization of a Flow inside an Opaque Tube Using Angiographic PIV Method (X선관을 이용한 불투명한 물체 내부 유동의 정량적 가시화 연구)

  • Kim, Guk-Bae;Lim, Nam-Yun;Ryu, Jae-Chun;Yim, Dae-Hyun;Lee, Hyung-Koo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2935-2940
    • /
    • 2007
  • To diagnose circulatory diseases in the viewpoint of hemodynamics, we need to get quantitative hemodynamic information of blood flows related with the vascular diseases with high spatial resolution of tens micrometer and high temporal resolution in the order of millisecond. For investigating in-vivo hemodynamic phenomena, a new diagnosing technique combining medical radiography and PIV method was newly proposed and developed. This angiographic PIV technique consists of a medical X-ray tube, an X-ray CCD camera, a shutter module for double pulses of X-ray, and a synchronizer. The feasibility of the angiographic PIV technique was tested and quantitative flow velocity field distribution of a flow inside an opaque conduit was acquired by the developed system. It can be used for measuring flow phenomena of nontransparent fluids inside opaque conduits.

  • PDF

Development of higher performance algorithm for dynamic PIV

  • NISHIO Shigeru
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.25-32
    • /
    • 2004
  • The new algorithm for higher performance of dynamic PIV has been proposed. Present study considered mathematical basis of PIV analysis for multiple-time-step images and it enables us to analyze the high time-resolution PIV, which is obtained by dynamic PIV system. Conventional single pair image PIV analysis gives us the velocity field data in each time step but it sometimes contains unnecessary information of target flow. Present technique utilize multi-time step correlation information, and it is analyzed.

  • PDF

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.