• 제목/요약/키워드: PIV technique

검색결과 318건 처리시간 0.026초

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

유동 가시화 기법을 이용한 RAC의 이슬 맺힘 특성에 관한 연구 (A Study on Characteristics of Condensation for RAC Using Flow Visualization Technique)

  • 이아미;김동원;라선욱;고한서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3092-3097
    • /
    • 2007
  • Although noise of a RAC can be reduced effectively by decreasing RPM, condensation problems can occur to reduce reliability of the RAC for low RPM. Thus, this research has been performed to propose a design guideline of the RAC for low-noise RPM with high reliability. The internal and external flows of the RAC have been visualized and analyzed by a PIV technique to solve the condensation problem at an outlet and impeller. Then, the design guideline has been proposed by the analyzed results and confirmed by wind-tunnel and noise tests to reduce the condensation problem. Finally the shapes of the outlet with reduced condensation problem and the impeller with low noise have been obtained in this study.

  • PDF

Experimental Studies on Swirling Flow in a Vertical Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.907-913
    • /
    • 2011
  • Swirling flows are related to the spiral motion in the tangential direction in addition to the axial and radial direction using several swirl generators. These type of flows are used in combustion chambers to improve flame stability, heat exchanger to enhance heat transfer coefficients, agricultural spraying machines and some vertical pipes to move slurries or transport of materials. However, only a few studies three dimensional velocity profiles in a vertical pipe have been reported. In this present paper, 3 dimension particle image velocimetry(PIV) technique was employed to measure the velocity profiles in water along a vertical circular pipe with Reynolds number from 6000 to 13,000. A tangential inlet condition was used as the swirl generator to produce the required flow. The velocities were measured with swirling flow in the water along the test section using the PIV technique.

중성자 래디오그래피를 이용한 액체금속 유동장 측정 (Measurement of Liquid-Metal Flow with a Dynamic Neutron Radiography)

  • 차재은;사이토
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.63-68
    • /
    • 2011
  • The flow-field of a liquid-metal system is very important for the safety analysis and the design of the steam generator of liquid-metal fast breeder reactor. Dynamic neutron radiography (DNR) is suitable for a visualization and measurement of a liquid metal flow and a two-phase flow in a metallic duct. However, the three dimensional DNR techniques is not enough to obtain the velocity information in the wide channel up to now. In this research, a high speed DNR technique was applied to visualize the heavy liquid-metal flow field in the narrow channel with the HANARO-beam facility. The images were taken with a high frame-rate neutron radiography at 250 fps and analyzed with a Particle Image Velocimetry(PIV) method. The images were compared with the results of the commercial CFX code to study the feasibility of DNR technique for the measuring the heavy liquid-metal flow field. The PIV images could discern the turbulent vortex flow in the two-dimensional narrow channel.

국한 충돌 제트의 비정상 거동에 대한 실험적 연구 (Experimental Study on the Unsteady Behavior of a Confined Impinging jet)

  • 김경천;오성진;이인원
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.23-27
    • /
    • 2005
  • The flow characteristics in a confined slot jet impinging on a flat plate were Investigated by using cinematic Particle Image Velocimetry technique. The jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. We found that the vortical structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Vortical structures and their temporal evolution are verified by using cinematic Particle Image Velocimetry technique.

  • PDF

조선해양공학 분야의 가시화기법 (Visualization Techniques for Marine Engineering Research)

  • 현범수;도덕희
    • 한국가시화정보학회지
    • /
    • 제1권2호
    • /
    • pp.3-12
    • /
    • 2003
  • This paper describes the general aspects of various visualization techniques employed for marine engineering research including classical naval architecture, ocean engineering and other related topics. Visualization techniques performed mostly by authors' were introduced here, which range from old fashioned methods such as paint and tuft tests to the newly emerging PIV technique and Sonar in broad sense. Brief explanation of each technique was made for the instruction purposes. It is strongly recommended that the interdisciplinary project with experts in other research areas is necessary in order to develop more advanced and profitable techniques.

  • PDF

축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구 (A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner)

  • 김종규;강민욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF

An Experimental Study on Flow Characteristics of ERF Between Two Parallel-Plate Electrodes by Using PIV Technique

  • Chang, Tae-Hyun;Jang, Sung-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1763-1771
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of ER (Electro-Rheological) fluid flow in a horizontal rectangular tube with or without D. C voltage. To determine some characteristics of the ER flow, 2D PIV(Particle Image Velocimetry) technique was employed for velocity measurements. This research found the mean velocity distributions with 0kV /mm, l.0kV /mm and l.5kV /mm for Re=0, 0.62, 1.29 and 2.26. When the strength of the electric field increased, the cluster of ERF was clearly strong along the test tube and the flow rate decreased. The present results will contribute to the economical and compact design of ER fluids system.

EXPERIMENTAL STUDY ON TURBULENT SWIRLING FLOW IN A CYLINDRICAL ANNULI BY USING THE PIV TECHNIQUE

  • Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.17-22
    • /
    • 2004
  • An experimental investigation was conducted to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed using a flow visualization technique using smoke and dye liquid for Re=60,000-80,000. Using the two-dimensional Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulence intensity in water with swirl for Re=20,000, 30,000, and 40,000 along longitudinal sections. There were neutral points for equal axial velocity at y/(R-r)=0.7-0.75, and the highest axial velocity was recorded near y/(R-r)=0.9. Negative axial velocity was observed near the convex tube along X/(D-d)=3.0-18.0 for Re=20,000.