• Title/Summary/Keyword: PIV System

Search Result 382, Processing Time 0.032 seconds

A Study on Estimation of inner and Wall Pressure Distribution by 3-Dimensional velocity Measurement using PIV (PIV를 이용한 3차원 속도계측에 의한 유동장의 공간 및 벽면압력 분포 추정에 관한연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • A flow measurement system which is able to measure the instantaneous three-dimensional velocity components and the pressure distribution of fluid flows is developed using a digital image processing system and the stereoscopic photogrammetry. This system consists of two TV cameras a digital image processor and a 32-bit microcomputer. The capability of the developed system is verified by a preliminary test in which three-dimensional displancements of moving particles arranged on a rotating plate are tracked automatically. The constructed system is through the measurement and spatial pressure distribution is also obtained. The measurement uncertainty of this system is evaluated quantitatively. The present technique is applicable to the measurement of an unsteady fluid phenomenon especially to the measurement of three-dimensional velocity field of a complex flow.

  • PDF

Optimal Flow Control of Ceiling Type Indoor Unit by PIV Measurements (PIV 유동 계측을 통한 천장형 실내기의 최적 제어 설계)

  • Sung, Jae-Yong;An, Kwang-Hyup;Lee, Gi-Seop;Choi, Ho-Seon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1042-1050
    • /
    • 2003
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated to determine the design parameters for the optimal flow control. The flow was measured by a PIV(particle image velocimetry) system and an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number. This similarity is generally used in cases where the forced convection has similar magnitude of the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, experimental results show that 30$^{\circ}$is an optimal angle to avoid re-suction flows without significant increase in flow noise. Temperature distribution measured in the environmental chamber ensures the increased thermal comfort when compared to the case, 60$^{\circ}$angle. At the optimal angle, applying open/close control gives rise to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for thermal comfort.

PIV Measurements on the Flame Initiation and Propagation under Gas Explosions by Electrostatic Discharge Energies in a Confined Chamber with an Obstacle (장애물이 있는 챔버 내부의 정전기 방전 에너지에 의한 가스 폭발시 초기화염과 화염전파 특성에 대한 PIV 계측)

  • Park, Dal-Jae;Lee, Seok-Hwan;Sung, Jae-Yong;Lee, Young-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.682-687
    • /
    • 2009
  • In order to investigate the effects of three different electrostatic discharge energies on gas explosions, a high-speed PIV system has been applied. The present study paid attention to the flame initiation by the gas explosions and its propagation at the existence of an obstacle within a chamber. Three different ignition energies such as 0.56 mJ, 52.87 mJ and 112.5 mJ were used. It is found that the ignition kernel is bent by the electrostatic discharge during the flame initiation. Tangential velocities of unburnt mixture ahead of initially propagating flame fronts are increased with increasing ignition energy, which makes the flame propagation faster before it reaches the obstacle. Although the flame speed was found to be less sensitive to the ignition energies, the flame developments were different. The effects of the energies on explosion pressures were also discussed.

PIV measurement on flow characteristics behind a Tetrapod in uniform flow (균일 흐름에 놓인 테트라포드 후류 유동특성에 대한 PIV 계측)

  • Gim, Ok-Sok;Lee, Kyeong-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.207-217
    • /
    • 2008
  • Costal regions in Korea often suffer severe damages due to wave-induced disasters, storm surge disasters and so on. therefore, many engineers and researchers have devoted their energy to prevent these costal disasters. The development of artificial reefs including sunken vessels is one of their remarkable achievements and various kind of these artificial upwelling structures have been designed and applied. However, the flow characteristics around a Tetrapod under the water has not been investigated experimentally. So in this article, in uniform flow of circulating water channel and some different velocities, PIV measurement has been conducted on the flow characteristics behind a Tetrapod. The results were analyzed on the flow characteristics of both cases of a Tetrapod. Therefore, it can be concluded that the both cases have its own distinctive flow characteristics behind the bluff body; Case A has an steep upstream flow pattern. On the contrary, Case B has an developed downstream flow pattern in the near wake of the Tetrapod. The velocity gradient at position x=150mm of Case-A appears gently up and down But, the velocity gradient at the same position of Case-B appears better highly up and down.

Analysis on Spray Pattern of Airless Tip for Heavy Duty Coating Using Particle Image Velocimetry (PIV를 이용한 중방식 도장용 에어리스 팁의 분사패턴 분석)

  • Yoon, Soon-Hyun;Choi, Hyo-Sung;Kim, Dong-Keon;Kim, Bong-Hwan;Cho, Seung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • Heavy duty coating is playing an important role in the field of heavy industry in the development of the shipbuilding and plant industries. Heavy duty coating has the very important function of protecting steel under serious corrosive conditions. The airless tip used for heavy duty coating is an essential part that determines the spray pattern of the paint. This research investigated the injection properties of three airless tips(numbers 521, 523, and 525) by using particle image velocimetry(PIV). The velocity and turbulent intensity according to pressure change with each tip type were investigated by using PIV. If the pressure is greater, the turbulent intensity becomes stronger and the break up of particles becomes bigger as the tip number gets smaller. The velocity is the fastest in the center and decreases in the radial direction.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

Measurements on a Ship's Sloshing Flows by PIV (PIV에 의한 선박 슬로싱 유동 측정해석)

  • Doh, Deog-Hee;Cho, Yong-Beom;Pyeon, Yong-Beom;Baek, Tae-Sil;Kwon, Soon-Hong;Lee, Jeong-Han;Hwang, Yoon-Sik;Ryu, Min-Cheol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.119-122
    • /
    • 2007
  • The sloshing flows in the cargo tank model of a ship are measured by PIV and are analyzed with the results. The measurement system is consisted of a Nd-Yag laser(120mJ, 15Hz). two cameras($1k\;{\times}\;1k$) and a host computer. Four experimental cases were tested for the tank model. in which swaying motions are made by 6 DOF-motion platform. The amplitudes of swaying are 9.76mm and 29.29mm, and the frequencies are 0.633Hz and 0.828Hz. The measurement regions are the vertical plane 50mm away from the front wall of the tank where a pump tower is installed. It was verified that the flow patterns of the sloshing are similar each other when the swaying amplitudes are similar.

  • PDF

Design of Optimal Vane Control for Ceiling Type Indoor Unit by PIV measurements (천장형 실내기의 기류 가시화를 통한 최적 제어 설계)

  • Sung Jaeyong;An Kwang Hyup;Lee Gi Seop;Choi Ho Seon;Park Seung-Chul;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.533-536
    • /
    • 2002
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated using a PIV(particle image velocimetry) system For the PIV measurements, an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number, which is generally used in case that the forced convection has the similar magnitude as the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, the experimental results show that it should be less than $30^{\circ}$ to avoid re-suction flows which decrease the performance of the air-conditioner. At the vane angle of $30^{\circ}$, applying open/close control gives nae to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for the thermal comfort.

  • PDF

Research on the nasal airflow and heat and mass transfer (비강 내 공기유동과 열 및 물질전달에 관한 연구)

  • Kim, Sung-Kyun;Liem, Huynh Quang;Park, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1479-1483
    • /
    • 2008
  • The three main physiological functions of nose are air-conditioning, filtering and smelling. Knowledge of airflow characteristics in nasal cavities is essential to understand the physiological and pathological aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. In our laboratory, there have been a series of experimental investigations on the nasal airflow in normal and deformed nasal cavity models by PIV under both constant and periodic flow conditions. In this time, airflow inside normal nasal cavity is investigated numerically by the FVM general purpose code. The comparisons with PIV measurement are appreciated. Heat and humidity transfer is dealt numerically. Dense CT data and careful treatment of model surface under the ENT doctor’s advice provide more sophisticated cavity models for both PIV experiment and numerical grid system. Average and RMS velocity distributions have been obtained for inspirational and expirational nasal. Temperature distribution, heat and humidity transfer through the mucosa are obtained.

  • PDF

A Study on Ventilation Characteristics of LNG Carrier Hood room by PIV and CFD (PIV와 CFD에 의한 LNG선박의 Hood room 환기특성에 관한 연구)

  • Cho, D.H.;Kim, D.C.;Kim, M.E.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.673-679
    • /
    • 2000
  • LNG Carriers are currently known as sole commercial means of shipping natural gas on the sea. They are designed to proven dangerous explosion for shipping a lot of gas over long distance. In this study. In this study, a scaled model chamber was made to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model using visualization equipments with laser apparatus and image intensifier CCD camera gated by an AOM controller Twelve different kinds of measuring area were selected as experimental condition. Instant simultaneous velocity vectors at whole field were measured by using 2-D PIV system which software adopts two-frame grey-level cross correlation algorithm. To look into stagnation area of hood room for LNG carrier, a three-dimensional numerical simulation with standard ${\kappa}-{\varepsilon}$ model was carried out by using PHOENICS for three kinds of Reynolds number, $6.5{\times}10^3$, $9.7{\times}10^3\;and\;1.29{\times}10^4$, based on the cavity inlet velocity and cavity height. The flow pattern showed the large scale counter-clockwise forced-vortex rotated at center area, small eddies at each corner and stagnation area located at left-back upper side of model.

  • PDF