• 제목/요약/키워드: PIV System

검색결과 381건 처리시간 0.021초

Miniature Stereo-PIV 시스템의 개발과 응용 (Development and Application of a Miniature Stereo-PIV System)

  • 김경천;;김상혁
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1637-1644
    • /
    • 2003
  • Stereoscopic particle image velocimetry is a measurement technique to acquire three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced from out-of$.$plane velocity components using a stereoscopic matching method. Most industrial fluid flows are three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Miniature Stereo-PIV(MSPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some primitive experimental results of the Miniature Stereo-PIV system. The Miniature Stereo-PIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Miniature Stereo-PIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

Dual-plane Stereoscopic PIV Measurement on the Lobed Jet Mixing Flow

  • SAGA Tetsuo;KOBAYASHI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.108-122
    • /
    • 2001
  • In a continuing effect to study the mixmg enhancement by large-scale streamwise vortices in lobed mixing flows, an advanced PIV system named as dual-plane stereoscopic PIV system was used in the present study to conduct simultaneous vorticity (all three components) measurement of an air jet exhausted from a lobed nozzle. Unlike 'classical' 2-D PIV system or conventional 'single-plane' stereoscopic PIV system, the dual-plane stereoscopic PIV system used in the present study can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously. Therefore, it can provide the distributions of all the three components of vorticity vectors instantaneously and simultaneously. The evolution and interaction characteristics of the large-scale streamwise vortices and azimuthal Kelvin-Helmholtz vortices in the lobed jet mixing flow were revealed instantaneously and quantitatively from the measurement results of the dual-plane stereoscopic PIV system. The characteristics of the mixing process in the lobed jet mixing flow were analyzed based on the simultaneous measurement results of the steamwise vorticity and azimuthal Kelvin-Helmholtz vorticity distributions.

  • PDF

Stereoscopic Miniature PIV (MPIV) 시스템의 개발 (Development of a Stereoscopic Miniature PIV(MPIV) System)

  • 김상혁;;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.517-520
    • /
    • 2002
  • Stereoscopic particle image velocimetry is a measurement technique to acquire of three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced by out-of-plane velocity components using a stereoscopic matching method. Industrial fluid flows are almost three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Stereoscopic Miniature PIV(MPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some first experimental results of the stereoscopic PIV system. The Stereoscopic MPIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Stereoscopic MPIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

  • PDF

PIV 가시화에 의한 합류덕트에서의 유동특성 (Flow Characteristics for PIV Visualization at Junction Duct)

  • 김명관;권오붕;배대석
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.45-50
    • /
    • 2005
  • Characteristics of flows at T-junction duct with and without orifices are investigated in this paper. Experiments and PIV visualization were carried out for several flow rates. Two-dimensional PIV experimental apparatus was decided by numerical analysis. PIV visualization was also coded to visualize flow fields at junctions for two-dimensional case. For the PIV visualization system, Grey-Level Cross-Correlation particle tracking algorithm was used to calculate the flow fields. Vinyl chloride polymer particles of $100{\sim}150{\mu}m$ of diameter are used in this visualization. The PIV visualization results showed relatively good agreement with Experimental data.

  • PDF

PIV 성능시험을 위한 표준실험장치 개발 (Development of Standard Experimental Apparatus for PIV Performance Evaluation)

  • 성재용;도덕희;이석종;황태규
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.37-43
    • /
    • 2006
  • An experimental apparatus for PIV performance evaluation has been developed. Stardard uncertainty of a two-dimensional cross-correlation PIV system was investigated based upon the standard experimental apparatus, which was devised to model the rigid body rotating flows. For the systematic analysis of the uncertainty introduced by each component (algorithm, CCD camera, frame grabber) of the PIV system, standard images are fed into the component independently. The standard experiments show that 53% of the uncertainty in the present PIV system results from the frame grabber but the errors from the algorithm and digital camera are ignorable.

  • PDF

스테레오 PIV에 의한 원관내 선회유동중 실린더형 부유체 주위 유동 특성 해석 (Flow Analysis around a Floating Cylinder in a Swirl Flow with a Stereoscopic-PIV)

  • 도덕희;황태규;다나카 코지;타께이 마사
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.319-322
    • /
    • 2006
  • The flow characteristics around a floating cylinder in a swirling flow field in a vertical pipe with a length of 600mm and an inner diameter of 100mm is investigated by the use of the Stereoscopic-PIV system. The measurement system consists of two cameras, a Nd-Yag laser and a host computer. Optical sensors(LEDs) were used to detect the location of the floating cylinder and to activate the Stereoscopic-PIV system. A conditional sampling Stereoscopic-PIV system was developed in which the flow fields around the floating cylinder are measured at the events of the activations. It has been verified that the motion of the floating cylinder becomes stable when the azimuthal velocity component of the swirl flow is maintained at stable states.

  • PDF

난류유동 해석을 위한 Dynamic PIV 시스템의 개발 (Development of a Dynamic PIV System for Turbulent Flow Analysis)

  • 이상준;장영길;김석
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

임상용 X-선관을 이용한 X-ray PIV시스템의 개발 (Development of X-ray PIV System Using a Medical X-ray Tube)

  • 임대현;김국배;김도일;이형구;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.403-406
    • /
    • 2006
  • A new medical X-ray PIV technique was developed using a conventional medical X-ray tube. To acquire images of micro-scale particles, the X-ray PIV system consists of an x-ray CCD camera with high spatial resolution, and a X-ray tube with small a focal spot. A new X-ray exposure control device was developed using a rotating disc shutter to make double pulses which are essential for PIV application. Synchronization methodology was also developed to apply the PIV technique to a conventional medical X-ray tube. In order to check the performance and usefulness of the developed X-ray PIV technique, it was applied to a glycerin flow in an opaque silicon tube. Tungsten particles which have high X-ray absorption coefficient were used as tracer particles. Through this preliminary test, the spatial resolution was found to be higher than ultrafast MRI techniques, and the temporal resolution was higher than conventional X-ray PIV techniques. By improving its performance further and developing more suitable tracers, this medical X-ray PIV technique will have strong potential in the fields of medical imaging or nondestructive inspection as well as diagnosis of practical thermo-fluid flows.

  • PDF

소파블록과 인공어초 주위의 유동 해석을 위한 PIV 적용 (PIV Applications for Flow Analysis of Tetrapod and Artificial Reef)

  • 이경우;조대환;김호;이승건
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.141-146
    • /
    • 2005
  • 본 연구에서는 최근 유체역학 유동장 해석분야에서 각광을 받고 있는 PIV 해석기술을 이용하여 소파블럭과 인공어초 주위의 유동을 실험적으로 분석하였다. 실험에 사용된 소파블럭은 현재 현장에서 널리 채택, 운용되는 삼각뿔 tetrapod를 이용하였고 인공어초로는 원통형인 흄관어초 모형을 이용하였다. 유동장 촬영은 소형 회류수조와 아르곤 레이저, 고속 카메라 등을 이용하였다. 최종적으로 영상정보를 이용하여 PIV 해석을 실시, 실험 대상 물체 주위의 경계층(Boundary layer)영역, 박리 현상 등의 유동 특성을 조사하였다.

  • PDF

입자영상유속계를 이용한 분기관내 유동가시화 (Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry)

  • 노형운;서상호;유상신
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권1호
    • /
    • pp.29-36
    • /
    • 1999
  • 본 연구는 목적은 PIV 시스템을 이용하여 분기관내 유동현상을 가시화하여 분기부 영역의 유동특성을 분석하는데 있다. PIV 시스템으로 유동장을 가시화하기 위해서 분기관 모델은 투명 아크릴판으로 제작하였고 작동유체와 추적입자는 각각 물과 송화가루를 사용하였다. 유동장에서 획득된 영상으로부터 속도벡터를 얻기 위해서 입자추적방법의 1-프레임 법과 2-프레임 법, 상호상관 PIV법인 2-프레임법을 사용하였다. PIV 시스템으로 측정된 실험결과의 신뢰성을 확보하기 위해서 표면구동 캐비티 유동의 속도분포를 4-프레임법으로 얻어진 기준 실험 데이터와 비교하였다. 분기관에서 뉴턴유체의 유동현상을 효과적으로 가시화하는데 필요한 상호상관 PIV방법의 2-프레임법을 적용하는 알고리즘을 개발하였고, sub-pixel과 면적보간을 사용하여 오벡터를 제거후 최종속도벡터를 얻었다. PIV를 이용한 분기관내 유동가시와 실험결과를 신뢰할 수 있는 수치해석 결과를 이용하여 검증한 결과 PIV 실험으로 얻어진 속도벡터는 수치해석의 결과와 잘 일치하였다. PIV 실험과 수치해석 결과로부터 분기관모델의 분기점 원위부에 재순환영역이 형성됨이 확인되었고 두 다른 방법을 이용한 재순환영역의 길이와 높이는 거의 동일하였다.

  • PDF