• Title/Summary/Keyword: PITCHING

Search Result 407, Processing Time 0.027 seconds

Analysis of Pitching Motions by Human Pose Estimation Based on RGB Images (RGB 이미지 기반 인간 동작 추정을 통한 투구 동작 분석)

  • Yeong Ju Woo;Ji-Yong Joo;Young-Kwan Kim;Hie Yong Jeong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.16-22
    • /
    • 2024
  • Pitching is a major part of baseball, so much so that it can be said to be the beginning of baseball. Analysis of accurate pitching motions is very important in terms of performance improvement and injury prevention. When analyzing the correct pitching motion, the currently used motion capture method has several critical environmental drawbacks. In this paper, we propose analysis of pitching motion using the RGB-based Human Pose Estimation (HPE) model to replace motion capture, which has these shortcomings, and use motion capture data and HPE data to verify its reliability. The similarity of the two data was verified by comparing joint coordinates using the Dynamic Time Warping (DTW) algorithm.

UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION (피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석)

  • Kim, D.H.;Kim, Y.H.;Kim, D.H.;Yoon, S.H.;Kim, G.S.;Jang, Y.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

Comparison of Electromagnetic Force Characteristics and Experiment of Pitching Moment in Permanent Magnet Linear Synchronous Motor According to the Moving Iron Core and Stator Topology (철심형 이동자와 고정자의 형상에 따른 영구자석 선형 동기전동기의 전자기력 특성 비교 및 피칭 모멘트 실험)

  • Lee, Seung-Han;Cho, Han-Wook;Khim, Gyungho;Oh, Jeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1695-1702
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of force characteristics in permanent magnet linear synchronous motor for accuracy prediction of linear motion machine tools. In particular, the pitching moment resulting from attraction force ripple has been analysed and tested. Firstly, we analysed the characteristics of detent force, attraction force, and pitching moment in permanent magnet linear synchronous motor according to the design techniques such as auxiliary teeth, chamfering, and permanent magnet skewing. In addition, we suggested the experimental set for measurement of pitching moment. Finally, the results from measurement shows the good agreement with those obtained from finite element analysis results.

Comparative Analysis of Upper Extremities Muscle Activity during Baseball Pitching in Middle and High School Baseball Players (중, 고등학교 투수의 투구 시 상지의 근활성도 비교분석)

  • Chan-hee Park
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.39-48
    • /
    • 2023
  • Background: The position of pitcher requires a lot of repetitive motion, and because of this, it is known that not only professional baseball players, but also middle and high school players are frequently exposed to injuries in baseball. The purpose of this study is to examine the differences in upper extremity muscle activity during repeated pitching and the activity of each muscle during repeated pitching by analyzing middle and high school pitchers, divided into groups by age. Methods: Twenty participants (10 middle school male students and 10 high school male students) were recruited for this research. The outcome measures included neuromuscular motor control, including the upper trapezius (UT), triceps brachii (TB), deltoid (DT), latissimus dorsi (LD), biceps brachii (BB), pectoralis major(PM), extensor carpi radialis(ER), and flexor carpi radialis (FR). Results: The two-way analysis of varaince (ANOVA) was used to compare the muscle activity variables between the middle school and high school students. The one-way ANOVA was used to compare the muscle activity variables within time differences each groups. Conclusion: Our results provided promising clinical evidence that guide for upper extremity muscles to increase pitching efficiency in middle and high school base ball players.

  • PDF

An Analytical Study of Suspension Design Parameters in order to Reduce the Pitching Motion of Medium Truck (중형 트럭의 피칭 운동 저감을 위한 현가계의 설계 변수에 관한 해석적 연구)

  • 이희범;이기호;김태식;손한규;안찬우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.154-160
    • /
    • 1998
  • Ride quality of medium truck became a very important factor in the suspension design, to the demand of more comfortable ride of passengers. This study describes how to determine and evaluate design parameters related to the chassis suspension system with time and frequency analysis. The spring stiffness and damping force of the chassis suspension system were obtained by observing the vertical acceleration PSD. The simulation was carried out on various road profiles, which was suggested by ISO. The pitching motion of the medium size truck was observed to improve the ride quality. A computer simulated truck model was constructed using DADS, a commercial dynamic analysis software, in order to simulate the truck motions. From the analyzed process of suspension parameters, it was concluded that the spring and the shock absorbers affect the pitching of the vehicle. In order to validate the computer simulated truck model, a physical prototype was constructed and tested.

  • PDF

Computation of Unsteady Flows over an Oscillating airfoil (진동하는 익형을 지나는 비정상 유동에 관한 계산)

  • Yang C. M.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.125-130
    • /
    • 1999
  • A flowfields around a NACA0012 airfoil pitching about a 1/4 chord and plunging in vertical displacement are analyzed by solving two-dimensional compressible Navier-Stokes equations. A steady solution was solved first as a validation of the code used and the results were compared with experimental data. Then as a unsteady case, the oscillatory airfoil was solved to compare the results with experimental data. Oscillating rate of pitching and plunging motion was set to have analogy and the magnitude of plunging was set using the magnitude of pitching angle of attack. Finally combined pitching and plunging motion was solved to show the effect of 2 different types of oscillating motion of the airfoil.

  • PDF

The Effect of Stationary Fin and Buoyancy Devices on Dynamic Pitching of the Tracked Vehicle (궤도차량의 동적 피칭에 미치는 고정식 핀(Fin) 및 부력장치의 영향)

  • Park, KyungChul;Kim, HyeongHyeon;Kwon, JoonSik;Kim, KyungRo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.220-225
    • /
    • 2015
  • In this study, the effect of stationary fin and buoyancy devices on dynamic pithing of the tracked vehicle was investigated. For this work, the stationary fin and buoyancy devices were installed in front of body and then pitching variation was measured when rapidly reducing the vehicle speed in water operation. According to the results of measuring the freeboard at each case, when only fin was installed, the effect on freeboard of tracked vehicle in water was negligible. However, when buoyancy devices were installed, front freeboard was approximately increased by about 20~25 mm and rear freeboard was decreased by about 10~15 mm per each addition of 100 kg buoyancy device. Based on the calculation result of pitching decrease rates, it was found that the pitching variation was decreased approximately 12.3 % by fin installation and approximately 2 % by installation of each 100 kg of buoyancy device. The case in which only fin installation was made showed the best efficiency in decreasing pitching variation of the tracked vehicle in water compared to the other cases.

Design and Manufacturing of Miniature Three-Wheel Pitching Machine (미니어처 3휠 피칭머신 설계 및 제작)

  • Kim, Yun-Ki;Ban, Yeong-Hun;Lim, Hyung-Taek;Lee, Dong-Eon;Lee, Jin-Kyu;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.130-136
    • /
    • 2017
  • The three-wheel pitching machine is a device that throws balls automatically instead of a pitcher and is used chiefly to train baseball players. The machine is abundantly used by people in indoor baseball grounds for baseball games. However, in Korea, foreign products are more popular because the efficiency of domestic products is poor as compared to that of the foreign ones. Therefore, a miniature pitching machine was manufactured to analyze and solve the problems of the existing machine. We added a feeder device to insert the balls in the machine and developed a smart phone application. The machine is easily controlled by a smart phone with bluetooth. While manufacturing the miniature, the existing problems were mitigated and the machine was redesigned for mass production. This study attempted to render the pitching machine more convenient and safer as a substitute for foreign pitching machines.

A Numerical Analysis on Mixing Performance for Various Types of Turbine Impeller in a Stirred Vessel (교반기 내 터빈 임펠러 형태에 따른 교반성능에 대한 수치해석적 연구)

  • Choi, Younguk;Choi, Jongrak;Kim, Daejoong;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • In the present study, a numerical simulation to analyze mixing performance inside an industrial mixer was investigated for various geometry of turbine impellers. Various pitching angles and various types of turbine blades were considered in the simulation. In order to model the rotation of impeller, the Multiple Reference Frames (MRF) technique was used. For evaluation of the effect of various shapes on the mixing performance, dimensionless coefficient such as flow coefficient, circulation coefficient, power coefficient, pumping effectiveness and circulation effectiveness were used. From the results, the effect of pitching angle of a pitched turbine impeller was to give best pumping effectiveness around $30^{\circ}$ pitching angle, whereas best circulation effectiveness around $65^{\circ}$ pitching angle. Dual pitched turbine impeller showed best performance in both pumping effectiveness and circulation effectiveness among impeller types considered in the present study.

Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion (플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석)

  • Kim, Woo-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.