• Title/Summary/Keyword: PIT-C

Search Result 221, Processing Time 0.028 seconds

A study on the etch pits morphology and the defect in as-grown SiC single crystals (SiC 단결정의 etch pit 형상과 결함에 관한 고찰)

  • 강승민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.373-377
    • /
    • 2000
  • For 6H-SiC single crystals which was obtained by sublimation growth (modified Lely process), the relation between the defects and the etch pits to be formed at the site of dislocations were discussed. Typical hexagonal etch pits were formed on (0001) basal plane. The similar hexagonal etch pit shapes were formed on the site of micropipe defects and it was realized that internal planar defects was formed with the same matrix crystal structure as grown crystals, through the observation of the etching morphology at those internal defects.

  • PDF

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF

A Geothermal Model of Pit Area Using Computational Fluid Dynamics (CFD를 이용한 피트의 지중열 모델 구축에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

Surfactant Washing of Organics from a Contaminated Site I. Clean Up of Hydrocarbon Contaminated Soils (Surfactant washing에 의한 토양 내의 유기물 제거에 관한 연구 I. 탄화수소로 오염된 토양의 정화)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.357-364
    • /
    • 1997
  • The objective of this study was to find optimum nonionic surfactants for clean up of soils contaminated by hydrocarbon oils. PIT(phase inversion temperature) measurements in ternary systems containing pure hydrocarbons, pure nonionic surfactants, and water were carried out and interfacial tensions were measured as a function of time for n-hexadecane oil drops brought into contact with various mixtures of nonionic surfactant and water. Batch surfactant washing experiments were performed based on the measurement, results of PIT and interfacial tension and the results showed that maximum removal of n-hexadecane occurred at the PIT of the system. For the $C_{12}E_5(C_{12}H_{25}O(CH_2CH_2O)_5H)$ system, maximum n-hexadecane removal of 73.4% occurred at the PIT of $52^{\circ}C$. In contrast, n-hexadecane removal at $25^{\circ}C$ and at $60^{\circ}C$, each corresponding to the conditions of below PIT and above PIT of the system, was found to be 57.1% and 57.0% respectively. The maximum removal of a hydrocarbon at the PIT of a system, where the hydrophilic and hydrophobic properties are balanced, was found to be due to the existence of high oil solubilization into a middle-phase microemulsion and ultralow interfacial of the order of $10^{-2}$ to $10^{-3}$ dyne/cm between middle-phase microemulsion and excess oil phase.

  • PDF

The Possibility on Utilization of Underground Pit for Reduction of Cooling and Heating Load (냉방과 난방 부하 감소를 위한 지하피트의 이용 가능성)

  • Cho Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The purpose of this study is to predict outlet temperature and humidity through underground pit for the reduction of cooling load and heating load. Commonly, the underground temperature is lower than outdoor in summer but the reverse happens in winter. When the outdoor average air temperature is $25.7^{\circ}C$ during cooling periods, the average outlet air temperature through underground pit is $23.6^{\circ}C$ with 3 m-depth and 60m-length and is $22.2^{\circ}C$ with 3 m-depth and 150 m-length. When the outdoor average air temperature is $4.9^{\circ}C$ during heating periods, the average outlet air temperature through underground pit is $7.7^{\circ}C$ with 3m-depth and 60 m-length and is $10.8^{\circ}C$ with 3 m-depth and 150 m-length. The outlet air temperature is affected by more length than depth of underground pit. The diffusion ratio of outdoor humidity is $-7.7\times10^{-8}kg/s$ in cooling periods and $9.29\times10^{-7}kg/s$ in heating periods.

Effect of Polar Components on Phase Inversion Temperatures in Systems Containing Nonionic Surfactants and Nonpolar Oils (비이온성 계면활성제, 비극성 오일을 포함한 계에서의 극성 성분의 Phase Inversion Temperature에 대한 영향)

  • Lim, Jong-Choo;Mori, Fuyuhiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.274-284
    • /
    • 1994
  • Phase Inversion Temperature (PIT) measurements showed that the addition of polar components such as oleyl alcohol and oleic acid to the system comprising n-dodecylpentaoxyethylene monoether ($C_{12}E_5$), nonpolar oil (n-hexadecane) and water produced large reductions in the PIT. The PIT was lowered as the additive-to-surfactant ratio in the surfactant films in the microemulsion phase was increased. Another dramatic effect of additive was the manner in which it affects the volume of the microemulsion phase at the PIT of the oil and water solubilization characteristics. Microemulsion phase volume was increased rapidly with decreasing PIT, i.e., with increasing amounts of additive in the system. Also with a decrease in PIT, the solubilization parameters of both oil and water in the microemulsion phase were strikingly increased. Even though soil removal data were not available for the conditions where our results obtained, PIT measurement seems a useful starting point for estimating conditions when middle-phase microemulsion formation and its associated high solubilization of oil can be expected.

  • PDF

Effectiveness Assessment on the Soil Temperature of KMA as Ground Heat Source Using CFD in Pit Area (CFD를 이용한 기상청 지중온도의 피트부분 지중열원 유용성 평가에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.49-54
    • /
    • 2008
  • The experimental of temperature, humidity and velocity was taken from the underground pit which utilized the system of ground heat source quite similar to the cool-pit system. Also, through CFD analysis, one could review the effectiveness of analysis of future alternatives. Furthermore, the temperature range of mock up cool-pit system was analyzed by inputting the weather data of annual average soil temperature provided by KMA(Korea Meteorological Administration) into the fluid simulation of anticipated heat distribution. Firstly, the difference between the temperature of air exhaust of the pit or the temperature of air supply of the compressor room and the experimental data for the month of May from the CFD analysis came out to be $0.6^{\circ}C$ and $0.9^{\circ}C$ respectively with tolerance of 3.1% and 4.7%. Secondly, the difference between the temperature of air exhaust of the Pit or the temperature of air supply of the compressor room and the experimental data for the month of July from the CFD analysis came out to be $0.8^{\circ}C$ and $1.1^{\circ}C$ respectively with tolerance of 3.3% and 4.5%. Thirdly, for the month of May, the difference between the experimental data taken for the air exhaust of the Pit or the air supply of the compressor room and soil temperature provided by KMA for monthly and yearly average temperature of Jeonju region came out be $1.9^{\circ}C$ and $1.8^{\circ}C$ respectively with tolerance of 10.7% and 9.8%. Fourthly, for the month of July, the difference between the experimental data taken for the air exhaust of the Pit or the air supply of the compressor room and soil temperature provided by KMA for monthly and yearly average temperature of Jeonju region came out be $1.1^{\circ}C$ and $1.4^{\circ}C$ respectively with tolerance of 4.5% and 5.8%. The result of above experiments allowed us to establish CFD model set up as a verification tool that is based on experimental data collected within the Pit area. Also, one could confirm the possibility to apply weather data of soil temperature provided by KMA in order to anticipate proper value for CFD analysis.

A Case Study on Effectiveness Assessment of Supply Air System Using Pit in Building (Pit를 이용한 건물 급기방식의 효용성 평가에 관한 사례 연구)

  • Min, Joon-Ki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.16-21
    • /
    • 2017
  • In this study, the flow effect of warming and cooling in the air supply of a pit for air conditioning were evaluated in BS art museum. We simulated the flow temperature for a pit winter and summer seasons using computational fluid dynamics. Consequential, energy saving, energy saving costs and initial payback periods were calculated and the following conclusions were drawn. The warming effect of the winter increased by $18.1^{\circ}C$ and $0.2^{\circ}C/m$ and the cooling effect of the summer decreased by $6.1^{\circ}C$ and dropped to $0.07^{\circ}C/m$. Energy saving appeared to be 19.1 kW in the summer and 54.3 kW in winter. Energy saving costs ranged from 2,567,119 won/year to 5,134,238 won/year and at minimum, initial payback period for initial investment was 3.9 years. As a result, the air supply system using an existing pit without any burden on initial investment costs is believed to contribute to energy saving through warming and cooling of unutilized energy effects.

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF