• Title/Summary/Keyword: PIN diode

Search Result 165, Processing Time 0.029 seconds

Study on the UHF-band Variable Attenuator Using the 3-dB Coupler (UHF대역 3-dB 커플러(Coupler)를 이용한 가변 감쇄기(Attenuator)에 대한 연구)

  • 박경태
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2001
  • A design and implementation method for the UHF-band(800MHz) variable attenuator using the 3dB coupler is proposed. The 90 degree, 3-dB Coupler is used for the variable attenuator. The principal theory for the 3-dB coupler is introduced. The 3-dB Coupler is designed by the mathematical analysis and a computer simulation tool. A PIN diode is used for the variable resistor at UHF-band. The variable attenuator using the 3-dB coupler and the PIN diode is designed and implemented. The measured results for the variable attenuator by a network analyzer show that the insertion loss is below -l0dB, and the continuous variable attenuation range is about 10dB.

  • PDF

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.715-730
    • /
    • 2019
  • We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.

Fabrication and characteristic evaluation of microfluidics chip integrated OLED for the light sources (OLED광원이 집적화된 마이크로 플루이딕칩의 제작 및 특성 평가)

  • Kim, Young-Hwan;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.377-377
    • /
    • 2007
  • A simplified integration process including packaging is presented, which enables the realization of the portable fluorescence detection system. A fluorescence detection microchip system consisting of an integrated PIN photodiode, an organic light emitting diode (OLED) as the light source, an interference filter, and a microchannel was developed. The on-chip fluorescence detector fabricated by poly(dimethylsiloxane) (PDMS)-based packaging had thin-film structure. A silicon-based integrated PIN photo diode combined with an optical filter removed the background noise, which was produced by an excitation source, on the same substrate. The active area of the finger-type PIN photo diode was extended to obtain a higher detection sensitivity of fluorescence. The sensitivity and the limit of detection (LOD S/N = 3) of the system were $0.198\;nA/{\mu}M$ and $10\;{\mu}M$, respectively.

  • PDF

Switchable Frequency of an Equilateral Triangular Microstrip Antenna with PIN Diodes (PIN 다이오드를 이용한 정삼각형 마이크로스트립 안테나의 동작 주파수 변환)

  • 김보연;성영제;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1090-1099
    • /
    • 2004
  • In this paper a novel design of equilateral-triangular microstrip antenna using PIN diode fur switching the resonant frequency is presented and experimentally studied. The proposed antenna has changed the resonant frequency by length of spur-lines on the patch, and PIN diodes are utilized to switch the spur-line on and off. The shape of the spur-line is changed according to the on and off states of PIN diode and the equilateral triangular microstrip antenna has different resonant frequencies in accordance with them. The resonant frequency is 1.22 GHz with off states since the surface currents flow the periphery of T shape spur-lines, while the resonant frequency is 1.82 GHz with on states since the surface currents are little effect with the conventional equilateral triangular microstrip antenna. The radiation pattern of the proposed antenna has a good linear polarization with the cross polarization of -20 dB both with on and off states.

Design of a S-Band Transfer-Type SP4T Using PIN Diode (PIN 다이오드를 이용한 S-대역 고출력 경로선택형 SP4T 설계)

  • Yeom, Kyung-Whan;Im, Pyung-Soon;Lee, Dong-Hyun;Park, Jong-Seol;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.834-843
    • /
    • 2016
  • In this paper, the design of a PIN diode S-band transfer-type SP4T including its driver circuit is presented. Each path of the SP4T is composed of the cascade connection of series-shunt PIN diodes to improve the isolation performance. The SP4T is implemented using chip type PIN diodes and a 20 mil AIN substrate fabricated using thin film technology. The driver circuit for the SP4T is designed using a multiplexer and four NMOS-PMOS push-pull pair. From on-wafer measurement, the fabriacted SP4T shows a maximum insertion loss of 1.1 dB and a minimum isolation of 41 dB. The time performance of the driver circuit is evaluated using the packaged PIN diodes with the identical PIN diode chip, and the transition time for on-off and off-on are below 100 nsec. For an input power level of 150 W, the measured insertion loss and isolation are close to those of the on-wafer measurement taking into consideration of the coaxial package mismatch and insertion loss.

Design of A Waveguide Limiter Having an Improved Attenuation and a Broadened Bandwidth by Using Multiple PIN-Diode Posts (다중 PIN-다이오드 포스트를 이용한, 향상된 감쇄량과 대역폭이 늘어난 도파관 리미터의 설계)

  • Kattak, Muhammad Kamran;Yoo, Seon-woong;Kahng, Sungtek;Yoo, Seongryong;Oh, DongChul;Roh, DonSuk;Yun, Songhyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.26-31
    • /
    • 2015
  • This paper deals with a size-reduced Ku-band waveguide limiter. Basically, it passes the signal from 16.125 GHz through 16.375 GHz, but when excessively high power is injected to the input port, it should change to a bandstop filter. Furthermore, it is required to change to bring attenuation by more than 20 dB and 50 dB over a narrow band and the entire passband, respectively. Therefore, in order to meet this requirement, a limiting device is implemented with multiple PIN-diode posts that enable the limiter to be the bandpass filter and stopband one at the off and on states of the PIN-diode switch, respectively. So, the design goes through the equivalent circuit modelling and the geometry is realized in the accurate electromagnetic analysis CAD tool. Finally, the result is discussed to shed light on whether it complies with the aforementioned requirement.

Low Phase Shift Attenuator Using the Half-Moon Radial Stub (반달 모양의 방사형 동조 스터브를 이용한 저위상 변화 감쇠기의 설계)

  • 윤종만;양기덕;김민택;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.452-461
    • /
    • 1997
  • In this paper, we present a computer-aided design(CAD) technique for minimizing the phase shift in microstrip PIN diode attenuators due to the junction capacitance in the equivalent circuit model of PIN diode. Microstrip PIN diode attenuators use the characteristics which the reactance of microstrip line changes from inductive to capacitive as the frequency sweeps across the band. Microstrip PIN diode attenuator designed utilizes the quarter-wavelength transmission line terminating with the half-moon radial stub, which is designed for negligible phase shifting effect over the intersted bandwidth. The attenuator has similar phase shift at 0 dB and 10 dB of attenuation within average $1.27^{\circ}$ between 1.2GHz and 1.9GHz. The input and output return losses between 1.4 GHz and 1.9 GHz are less than 10 dB over the attenuation range of 0 dB and 10 dB.

  • PDF

A Characteristic Study on a Diode Phase Shifter in a Parallel Plate Waveguide (평행판도파관내에서의 다이오드 위상변위기 특성에 관한 연구)

  • Lee, Kee-Oh;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.644-651
    • /
    • 2009
  • In this paper, the design results of a $22.5^{\circ}$ diode phase shifter for the RADANT lens and two $11.25^{\circ}$, $22.5^{\circ}$ dielectric phase shift layers for the diode phase shifter are presented. The amount of phase shift introduced by each dielectric layer depends on the thickness and the shape of the metal strip and the electrical property of the diode. The equivalent circuit model is employed to represent the dielectric phase shift layer, and the simulated result of the equival circuit model is compared with the result of the field simulation. The measured data of the fabricated $11.25^{\circ}$, $22.5^{\circ}$ dielectric phase shift layer shows about $2^{\circ}$ phase shift error.

Implementation of High-Power PM Diode Switch Modules and High-Speed Switch Driver Circuits for Wibro Base Stations (와이브로 기지국 시스템을 위한 고전력 PIN 다이오드 스위치 모듈과 고속 스위치 구동회로의 구현)

  • Kim, Dong-Wook;Kim, Kyeong-Hak;Kim, Bo-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, the design and implementation of high-power PIN diode switch modules and high-speed switch driver circuits are presented for Wibro base stations. To prevent isolation degradation due to parasitic inductances of conventional packaged PIN diodes and to improve power handling capabilities of the switch modules, bare diode chips are used and carefully placed in a PCB layout, which makes bonding wire inductances to be absorbed in the impedance of a transmission line. The switch module is designed and implemented to have a maximum performance while using a minimum number of the diodes. It shows an insertion loss of ${\sim}0.84\;dB$ and isolation of 80 dB or more at 2.35 GHz. The switch driver circuit is also fabricated and measured to have a switching speed of ${\sim}200\;nsec$. The power handling capability test demonstrates that the module operates normally even under a digitally modulated 70 W RF signal stress.