• 제목/요약/키워드: PIM-polymer

Search Result 16, Processing Time 0.022 seconds

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance (마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구)

  • Ji Min Kwon;Hye Jeong Son;Jin Uk Kim;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.362-368
    • /
    • 2023
  • This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

(PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO2 Separation ((PIM-co-Ellagic Acid)-기반의 이산화탄소 분리막의 개발)

  • Hossain, Iqubal;Husna, Asmaul;Kim, Dongyoung;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.420-432
    • /
    • 2020
  • Random copolymers made of both 'polymer of intrinsic microporosity (PIM-1)' and Ellagic acid were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and flat-type hydrophilic ellagic acid, the membranes obtained from these random copolymers [(PIM-co-EA)-x] showed high CO2 permeability (> 4516 Barrer) with high CO2/N2 (> 23~26) and CO2/CH4 (> 18~19) selectivity, that surpassed the Robeson upper bound (2008) for both pairs of the gas mixture. Incorporation of flat-type ellagic acid into the PIM-1 not only enhances the gas permeability by disturbing the kinked structure of PIM-1 but also increases the selectivity of CO2 over N2 and CH4, due to an increase of rigidity and polarity in the resultant copolymer membranes.

Calix[6]arene Bearing Carboxylic Acid and Amide Groups in Polymeric CTA Membrane

  • Kim, Jong-Seung;Lee, Soo-Heon;Yu, Sang-Hyeok;Cho, Moon-Hwan;Kim, Dong-Won;Kwon, Seon-Gil;Lee, Eil-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1085-1088
    • /
    • 2002
  • Calix[6]arene having both carboxylic acid (1,3,5-) and carboxamide (2,4,6-) in an alternative way was synthesized. Transport rates of alkali and alkaline-earth metal ions were tested in bulk liquid membrane and polymer inclusion membrane. Ba2+ ion was found to give the highest transport rate among tested metal ions in both BLM and PIM systems. In PIM system, high durability (longer than 30 days) of the membrane was observed.

Powder Injection Molding Technology (분말 사출 성형 기술)

  • 하태권;성환진;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.521-528
    • /
    • 2003
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered, often to near-theoretical densities. According1y, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Since 1980s when major attention was given to PIM process, it has been widening the application area from small parts with complex shape and tailored properties to structural parts requiring strength and ductility as in automotive, military and medical industries.

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

Performance of an acidic extractant (D2EHPA) incorporated in IM used for extraction and separation of Methylene Blue and Rhodamin B

  • Aitali, S.;Kebiche-Senhadji, O.;Benamor, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.521-537
    • /
    • 2016
  • Laboratory-scale experiments were carried out to investigate the adsorption equilibrium, the adsorption kinetics and facilitated transport of two cationic dyes (Methylene Blue (MB) and Rhodamine B (RB)) on Polymer Inclusion Membrane (D2EHPA-PIM). Different adsorption isotherms (Freundlich, Langmuir and Temkin models) as well as kinetics models indicated that the adsorption process is spontaneous and exothermic. Under the optimal conditions, the adsorption removal efficiencies reach about 93% and 97% for MB and RB respectively. Different extraction values by D2EHPA-PIM were obtained for the two cationic dyes: MB is weakly extracted at pH 2.0 (E% = 18.7%) whilst E% = 82.4% was observed for RB at the same pH. This difference was exploited in a mixture containg both the 2 cationic dyes for the selective extraction of RB at pH 2. Desorption of both dyes was achieved from the membrane by using acidic aqueous solutions and desorption ratio up to 90% was obtained. The formulas of the extracted complexes by the PIMs were, determined by the method of slopes. The dyes transport was elucidated using mass transfer analysis where in it found relatively high values of the initial flux ($J_0$) as 41.57 and $18.74{\mu}mol.m^2.s^{-1}$ for MB and RB respectively.

A study on the Powder Injection Molding of Translucent Alumina via Flowability Simulation of Powder/Binder Mixture (분말사출성형 시 분말 혼합체의 유동성 시뮬레이션을 통한 투광성 알루미나 소결체의 특성 연구)

  • Kim, Hyung Soo;Byun, Jong Min;Kim, Se Hoon;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Translucent alumina is a potential candidate for high temperature application as a replacement of the glass or polymer. Recently, due to the increasing demand of high power light emitting diode (LED), there is a growing interest in the translucent alumina. Since the translucent property is very sensitive to the internal defect, such as voids inside or abnormal grain growth of sintered alumina, it is important to fabricate the defect-free product through the fabrication process. Powder injection molding (PIM) has been commonly applied for the fabrication of complex shaped products. Among the many parameters of PIM, the flowability of powder/binder mixture becomes more significant especially for the shape of the cavity with thin thickness. Two different positions of the gate were applied during PIM using the disc type of die. The binder was removed by solvent extraction method and the brown compact was sintered at $1750^{\circ}C$ for 3 hours in a vacuum. The flowability was also simulated using moldflow (MPI 6.0) with two different types of gate. The effect of the flowability of powder/binder mixture on the microstructure of the sintered specimen was studied with the analysis of the simulation result.

Effect of Sintering Temperature on the Tensile Properties of Powder Injection Molded PH 17-4 STS (분말사출성형을 통해 제조된 PH 17-4 STS 강의 소결온도에 따른 인장 특성)

  • Sung H. J.;Ha T. K.;Ahn S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.305-308
    • /
    • 2001
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered often to near-theoretical densities. Accordingly, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of casting. The 17-4 PH stainless steel powders with average diameter of $10{\mu}m$ were injection-molded into flat tensile specimens. Sintering of the compacts was carried out at the various temperatures ranging from 900 to $1350^{\circ}C$. Sintering behavior of the compacts and tensile properties of sintered specimens were investigated.

  • PDF

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.