• Title/Summary/Keyword: PID tuning

Search Result 497, Processing Time 0.042 seconds

A Study on the Direct Pole Placement PID Self-Tuning Controller design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Rhee, Kyu-Young;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.327-331
    • /
    • 1989
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for Robot manipulator control system. The method of a direct pole placement self-tuning PID control for a DC motor of robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of controller are estimated by the recursive least square(RLS) identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC motor speed control for Robot manipulator by a microcomputer IRH-PC/AT are performed and the results are well suited.

  • PDF

Application of Personal Computer as a Self-Tuning PID Controller

  • Tanachaikhan, L.;Sriratana, W.;Pannil, P.;Chaikla, A.;Julsereewong, P.;Tirassesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.505-505
    • /
    • 2000
  • Controlling the process by PID controller is widely used in industry by applying Ziegler-Nichols method in analyzing parameter of the controller. However, in fact. it is still necessary to tune parameter in order to obtain the best process response. This paper presents a Self-Tuning PID controller utilizes the personal computer to synthesize and analyze controller parameter as well as tune for appropriate parameter by using Dahlin method and Extrapolation. Experimental results using a Self-Tuning PID controller to control water level and temperature, it is found that the controller being developed is able to control the process very effectively and provides a good response similar to the controller used in the industry.

  • PDF

Tuning Algorithm for PID Controller Using Model Reduction in frequency Domain (주파수 영역에서의 모델 축소를 이용한 PID 제어기의 동조 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2114-2116
    • /
    • 2001
  • Model reduction from high order systems to low order systems in frequency domain is considered four point (${\angle}$G(jw)=0, - ${\pi}/2$, ${\pi}$, and -3${\pi}$/2) instead of two point (${\angle}$G(jw) = - ${\pi}$/2,- ${\pi}$) of existing method in Nyquist curve. The Performances of reduced order model by proposed approach is similar to original model. In this paper, we proposed a new tuning algorithm for PID controller using model reduction in frequency domain. Simulations for some examples with varies dynamic characteristics are provided to show the effectiveness of the proposed tuning algorithm for PID controller using model reduction.

  • PDF

Transient Characteristics Improvement Using Hybrid Control for Inverter Systems (하이브리드 제어에 의한 인버터 시스템의 과도특성 향상)

  • Kim, Gyu-Sik
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2004
  • In this paper, the hybrid-type current controller for inverter TIG systems was implemented and it was shown that the low-current pulse wave forms with high dynamic performance could be obtained. It is not sri easy to obtain the optimum gain tuning of PID controllers in digital PWM control methods. Hybrid control methods which uses automatic tuning techniques after adding fuzzy control methods to traditional PID controllers are chosen to improve the dynamic performance of PID controller's. To demonstrate the practical significance and dynamic performance improvement of the results, some simulation and experimental results are presented.

  • PDF

PID Control of Poly-butadiene Latex(PBL) Reactor Based on Closed-loop Identification and Genetic Algorithm

  • Kwon, Tae-In;Yeo, Yeong-Koo;Lee, Kwang Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2600-2605
    • /
    • 2003
  • The PBL (Poly-butadiene Latex) production process is a typical batch process. Changes of the reactor characteristics due to the accumulated scaling with the increase of batch cycles require adaptive tuning of the PID controller being used. In this work we propose a tuning method for PID controllers based on the closed-loop identification and the genetic algorithm (GA) and apply it to control the PBL process. An approximated process transfer function for the PBL reactor is obtained from the closed-loop data using a suitable closed-loop identification method. Tuning is performed by GA optimization in which the objective function is given by ITAE for the setpoint change. The proposed tuning method showed good control performance in actual operations.

  • PDF

Neural Network Method for Tuning PID Gains (신경회로망을 이용한 PID 제어기의 이득조정)

  • Moon, Seok-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

Gain Tuning of PID Controllers with the Dynamic Encoding Algorithm for Searches(DEAS) Based on the Constrained Optimization Technique

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • This paper proposes a design method of PID controllers in the framework of a constrained optimization problem. Owing to the popularity for the controller's simplicity and robustness, a great deal of literature concerning PID control design has been published, which can be classified into frequency-based and time-based approaches. However, both approaches have to be considered together for a designed PID control to work well with a guaranteed closed-loop stability. For this purpose, a penalty function is formulated to satisfy both frequency- and time-domain specifications, and is minimized by a recet nonlinear optimization algorithm to attain optimal PID control gains. The proposed method is compared with Wang's and Ho's methods on a suite of example systems. Simulation results show that the PID control tuned by the proposed method improves time-domain performance without deteriorating closed-loop stability.

  • PDF

A LQ-PID Controller Tuning for TITO System (TITO 시스템의 LQ-PID 제어기 동조)

  • Lee, Dong-Bae;Suh, Byung-Suhl
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1252-1257
    • /
    • 2004
  • This paper presents a decentralized LQ-PID controller for the TITO system which satisfies the performance of good command following, disturbance rejection, and sensor noise reduction that is design specifications in the frequency domain The procedure is developed by establishing the relationship between the closed-loop state equations including the decentralized PID tuning parameters and the closed-loop state equations of LQR and by selecting the weighting factors Q and R of the cost function in order to satisfy the design specifications in the frequency domain.

Design of Honing Coolant Temperature Control System Based on Fuzzy Self-tuning PID

  • Ye, Lian-zheng;Lee, Chan-Su;Park, Seung-Yub
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.156-160
    • /
    • 2018
  • In the paper, a kind of self-tuning PID control system is designed to keep the honing coolant temperature constant in the process of automobile engine production. The conventional PID control method and the Fuzzy PID control method both are used to design and make the simulation experiment in Matlab. According to the simulation result, the performance of Fuzzy PID control method is obviously better. The Fuzzy PID control system can react faster to get the target temperature and resume normal when external conditions exchanged.

Intelligent tuning of 2-DOG controller (2-자유도 제어기의 지능형 튜우닝 연구)

  • 김동화;조일인;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • In this paper, Tuning method of the parameter P.I.D of the 2DOG-PID controller for having a required response to the disturbance and the setpoint is studied by the neural network. This algorithms is simulated in the level control of the steam generator and the flow control system, and resulting represents than the conventional PID controller.

  • PDF