• Title/Summary/Keyword: PID gain

Search Result 296, Processing Time 0.029 seconds

A Study on PID Gain Auto Tuning for Steering Type mobile robot (조향형 이동로봇을 위한 PID 이득 자동 튜닝에 관한 연구)

  • Jung, Se-Young;Yang, Tae-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, we propose PID gain auto tuning method in steering type mobile robot. PID controller gain select method are various methods. Ziegler-Nichols step tuning method is one method tuning in PID controller. Use step tuning method find a the first gain and did experiment in steering mobile robot. and Make a new the second gains from the first gains. After appling the second gain in PID controller, Where perform observe for convergence time and stabilization error. Experiments result the second gain are useful in real steering mobile robot system.

Variable-Gain PID Control of Longitudinal Tension in Web Transport System (연속공정 시스템에서의 장력의 가변이득 PID 제어)

  • 신기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.724-730
    • /
    • 1995
  • Fixed-gain and variable-gain PID control of tension in the winding section of a simple web transport system were evaluated. An open-loop mathematical model for the web transport system was derived and used for the design of the PID controllers. The winding roll radius is a timevarying parameter in the model. The fixed-gain PID controller designed at a particular instant of time could not meet the desired specifications, whereas the variable-gain PID controller could produce accurate tension control in the winding section. An advantage of the variable-gain control is its simplicity. This approach is easy to implement and shows promise for applications where the time-varying parameters are easily measured.

Fuzzy Scheduling for the PID Gain Tuning (PID 이득 동조를 위한 퍼지 스케줄링)

  • Shin Wee-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.120-125
    • /
    • 2005
  • In this paper, We propose the fuzzy controller for the gain tuning of PID controller The proposed controller doesn't use the crisp output error and rule tables though with a fuzzy inference process in forward fuzzifier, New Fuzzy PID Controller assigns relations and ranges of two variables of PID gain parameters. These new gain parameters are calculated by the fuzzy inference with max-min ranges of Kp and Kd. The Ki parameter is computed automatically between Kp and Kd parameter Is calculated by Ziegler-Nickels tuning rules. Finally we experimented the propose controller by the hydraulic servo motor control system. We can obtained desired results through the good control characteristics.

Fuzzy-PID Gain Scheduling Algorithm of Resistive Welder for Electronic Parts (전자부품용 저항용접기의 퍼지-PID 이득조정 알고리즘)

  • Park, Myung-Kwan;Lee, Jong-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.114-116
    • /
    • 2004
  • The temperature profile control issue in the resistive welder for the electronic parts is discussed. The average current of the welder tip depends on the phase(on-time) of the AC power and the tip temperature maintains or increases/decreases depending on the integral of the current square and heat loss, The basic PID control algorithm with thermo-couple feedback is difficult to track the temperature profile for various parts and optimal gain changes much. So constant gain PID algorithm is not enough to cover various electronic parts welding and a Fuzzy-PID automatic gain tuning algorithm is devised and added to conventional PID algorithm and this hybrid control architecture is implemented and the experimental results are shown.

  • PDF

Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius (롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어)

  • Park, Jong-Chan;Jeon, Sung Woong;Nam, Ki Sang;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

Research of Fuzzy Auto gain tuning control to apply actuator controller of Unmaned Aerial Vehicle (무인항공기 작동기 컨트롤러를 위한 퍼지 자동 이득 조정 PID 제어 연구)

  • Kim, Tae-Wan;Baek, Jin-Wook;Lee, Hyeong-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.813-819
    • /
    • 2009
  • Designing actuator controllers of aircraft, which control aileron, flap, elevator and so on, is quiet difficult, because they have time variant nonlinear mechanical structures and also have many kinds of disturbances which are not been able to model easily. This paper reports about the performance of Fuzzy Auto gain tuning Control algorithm applied unmaned aerial vehicle. Fuzzy Auto gain tuning PID control uses PID control and Fuzzy control, therefore It can be applied very easily and it also has advances of PID control. It can control a unmaned aerial vehicle actuators adaptively even though the designer does not have enough information of plant.

  • PDF

PID Control Structure for Model Following Control (모델 추종 제어를 위한 PID 제어기법)

  • 이창호;김종진;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.138-142
    • /
    • 2004
  • This paper proposes the design of the model following control system using the PID control structure. PID control system became model following control by inserting new pre-compensator in order to improve control performance in discrete-time region. Gain of the PID controller needs to be readjusted when response of system changes due to disturbance or load fluctuation. Performance of control system improves by joining neural network to PID control system because performance of control system depends largely on each PID gain in PID control system. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Angular position of DC servo motor is selected as a plant in order to verify control performance in model following control. After it is applied to the position control system, it's performance is verified through computer experiment.

  • PDF

Stability Analysis and Proposal of a Simple Form of a Fuzzy PID Controller

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1299-1312
    • /
    • 2004
  • This paper suggests the simple form of a fuzzy PID controller and describes the design principle, tracking performance, stability analysis and changes of parameters of a suggested fuzzy PID controller. A fuzzy PID controller is derived from the design procedure of fuzzy control. It is well known that a fuzzy PID controller has a simple structure of the conventional PID controller but posses its self-tuning control capability and the gains of a fuzzy PID controller become nonlinear functions of the inputs. Nonlinear calculation during fuzzification, defuzzification and the fuzzy inference require more time in computation. To increase the applicability of a fuzzy PID controller to digital computer, a simple form of a fuzzy PID controller is introduced by the backward difference mapping and the analysis of the fuzzy input space. To guarantee the BIBO stability of a suggested fuzzy PID controller, ‘small gain theorem’ which proves the BIBO stability of a fuzzy PI and a fuzzy PD controller is used. After a detailed stability analysis using ‘small gain theorem’, from which a simple and practical method to decide the parameters of a fuzzy PID controller is derived. Through the computer simulations for the linear and nonlinear plants, the performance of a suggested fuzzy PID controller will be assured and the variation of the gains of a fuzzy PID controller will be investigated.

Fuzzy gain scheduling for the gain tuning of PID controller and its application (PID 제어기의 게인 조절을 위한 퍼지 게인 스케쥴링 기법 및 응용)

  • 전재홍;이진국;김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.60-67
    • /
    • 1998
  • In this paper, a gain scheduling method of PID controller is proposed using fuzzy logic for balancing control of an inverted pendulum. First, gains of PID controller are calculated using pole-placement technique for the linearized model of an inverted pendulum and these gains are modified by fuzzy logic throughout control operations. A PD controller is used by switching near the set-point to improve the performance. It is illustrated by simulations that the proposed hybrid fuzzy control method yidels smaller rising time and overshoot compared to the fixed-gain PID controller or fuzzy logic-based only PID controller.

  • PDF

Control Gain Tuning of a Simultaneous Multi-Axis PID Control System by Taguchi Method (다구찌방법을 이용한 다축 동시 PID 제어시스템의 제어이득 조정)

  • Lee, Ki-Ha;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 1999
  • This paper presents a control gain tuning scheme for multi-axis PID control systems by Taguchi method. As an experimental set-up, a parallel mechanism machine tool has been selected. This machine has eight servodrives and each servodrive has four control gains, respectively. Therefore, total 32 control gains have to be tuned. Through a series of design of experiments, an optimal and robust set of PID control gains is tuned. The index of the sum of position error and velocity error is reduced to 61.4% after the experimental gain tuning regardless of the feedrate variation.

  • PDF