• Title/Summary/Keyword: PID controller PID

Search Result 1,741, Processing Time 0.035 seconds

Adaptive Fuzzy Control of Yo-yo System Using Neural Network

  • Lee, Seung-ha;Lee, Yun-Jung;Shin, Kwang-Hyun;Bien, Zeungnam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.161-164
    • /
    • 2004
  • The yo-yo system has been introduced as an interesting plant to demonstrate the effectiveness of intelligent controllers. Having nonlinear and asymmetric characteristics, the yo-yo plant requires a controller quite different from conventional controllers such as PID. In this paper is presented an adaptive method of controlling the yo-yo system. Fuzzy logic controller based on human expertise is referred at first. Then, an adaptive fuzzy controller which has adaptation features against the variation of plant parameters is proposed. Finally, experimental results are presented.

Geometric Modeling and Trajectory Control Design for an Excavator Mechanism (굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구)

  • Kim, S.H.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

A design of ANFIS controller through ES algorithm for disturbances rejection in Hot Rolling

  • Jaekyung Jung;Ohmin Kwon;Lee, Sangmoon;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.374-374
    • /
    • 2000
  • In this paper, we developed an ANFIS controller through ES algorithm for disturbances rejection in Hot Rolling. The looper of a Hot Rolling is installed between each pair of stands and plays key roles to enhance the product quality of the strip by controlling the tension and the width of the strip. At the same time, the AGC on top of the Mill produces a strip with the desired thickness through pressing its Mill. Between both, however, interactions are caused by coupling effects among strip tension, looper angle and strip thickness. In addition, in case disturbances, it is more difficult to keep strip quantities desirable. So we present an ANFIS controller through ES algorithm which is able to identify fuzzy rule with input/output data and update itself through output errors.

  • PDF

Study for the Controller Design of a Direct Drive Servo Valve (직접구동형 서보밸브의 제어기 설계에 관한 연구)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF

Dynamic Modeling and Active Controller Design for Elevator Lateral Vibrations (엘리베이터 횡진동 동적 모델링 및 능동진동제어기 설계)

  • Kwak, Moon-K.;Kim, Ki-Young;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper is concerned with the modeling and active controller design for elevator lateral vibrations. To this end, a dynamic model for the lateral vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the PID control algorithm and applied to the numerical model. Rail irregularity were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

Auto - Tuning Method for Expert Controller Implementation (전문가 제어기 구현을 위한 자동동조방법)

  • Soul, N.O.;Kim, S.J.;Lee, C.K.;Sin, D.Y.;Park, J.K.;Choi, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.68-71
    • /
    • 1990
  • In this paper, it is introduced about Auto-Tuning Method which applied to Expert Controller. This method constructs heuristic knowledge of the tuning experiment in order to realize relay tuning theory of Astrom &. Hagglund. This method applies to various Plant and showes utility which is used for Controller design of PID group. Result of simulation showed superiority for speed reponse and robustness of all Plant.

  • PDF

Wavelet Neural Network Controller for AQM in a TCP Network: Adaptive Learning Rates Approach

  • Kim, Jae-Man;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.526-533
    • /
    • 2008
  • We propose a wavelet neural network (WNN) control method for active queue management (AQM) in an end-to-end TCP network, which is trained by adaptive learning rates (ALRs). In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In our method, the WNN controller using ALRs is designed to overcome these problems. It adaptively controls the dropping probability of the packets and is trained by gradient-descent algorithm. We apply Lyapunov theorem to verify the stability of the WNN controller using ALRs. Simulations are carried out to demonstrate the effectiveness of the proposed method.

Digital Variable Structure Control for a Hot Water Heating System (온수나방 시스템의 디지틀 가변구조제어)

  • 안병천;장효환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • A pilot plant, which is simplified the hot water heating control system of a large scale residential building, is used to investigate the effects of control methods and operating conditions on the system performance and to compare control characteristics. Digital variable structure controller(DVSC) and digital PI controller are implemented to control the speed of the circulating pump for the pilot plant using PC. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of output error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The suggested DVSC yields improved control performance compared with existing DVSC using linear sliding surface only. the system responses with the suggested DVSC shows good responses without overshoot for various operating conditions and robust under external disturbances compared with digital PI controller.

  • PDF

Control of cambered web's lateral dynamics by a using steering guider (가이더를 이용한 Cambered Web의 사행거동 제어에 관한 연구)

  • Lee, Hyuk-Jong;Shin, Kee-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.688-693
    • /
    • 2001
  • It is almost impossible to have a straight web for processing in the continuous process systems. The cambered web usually causes the strip walking and damage during process. It is necessary to identify the lateral dynamics of the cambered web for the precise control of lateral behavior. In this paper, a dynamic model of the lateral behavior for a cambered web is developed by introducing the concept of steering angle equivalent to moment caused by the camber. This model can be extended to include terms associated with moment, induced by roller's tilting, web slippage, and shear force, etc. Using this model, a new feed-forward controller is proposed to enable the on-line camber estimation, which is difficult to be measured directly, and the prediction of lateral deflection caused by camber. Computer simulation study shows that the proposed controller successfully eliminates the effect of camber and has better control performance than that of the existing PID controller.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.