• Title/Summary/Keyword: PID control gain

Search Result 268, Processing Time 0.025 seconds

Virtual PID Algorithm Tuning Technique and Data Analysis through Computer Simulation (컴퓨터 시뮬레이션을 통한 가상 PID 알고리즘 튜닝 기법과 데이터 분석)

  • Jin Moon Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.875-882
    • /
    • 2023
  • In this paper, we propose a virtual tuning technique for a temperature controller using the PID algorithm. Virtual simulation on a computer was used using the mathematical expression of the control object. A technique for accurately calculating the gain of the PID algorithm was introduced through detailed computer data analysis, and superior performance compared to conventional experimental tuning results was verified. In addition, it has the advantage of replacing tuning experiments conducted on actual control subjects, so there are no temporal or spatial limitations. Tuning experiments that actually operate the control object do not show detailed data that appears during the process. The accuracy of the experiment could not be guaranteed, and the results could not be confirmed immediately. Through the proposed technique, the entire tuning process can be accurately checked on a computer and the cause of problems that occur can also be analyzed.

Design of PD controller for WMR using a Neural Network

  • Kim, Kyu-Tae;Kim, Sung-Hee;Park, Chong-Kug;Bae, Jun-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.180.5-180
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

Gain Parameter Determination for the Feeding Speed and Skew Controller of Media Transport System using Optimization Technique (최적화 기법을 적용한 매체 이송 시스템의 이송속도 및 비틀어짐 제어기의 이득값 결정)

  • Cha, Ho-Young;Bum, Sun-Ho;Kim, Min-Soo;Lee, Soon-Geul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • In this paper, we made a simple paper feeding system which is one of MTS (media transport system) and controllers. The plant has a flexible paper and two driving rollers and two driven rollers. The control system has two conventional PID controllers. Skew angle and feeding speed of MTS deteriorate the quality of feeding system. In order to control a feeding speed and skew of feeding paper, we control rotational velocity of two driving rollers. Therefore, this controller has two inputs and two outputs as MIMO (multi-input and multi-output) system. The control inputs were the feeding speed and the skew displacement of the paper. The control outputs were the rotational velocity to each driving roller. To find appropriate PID gains of two controllers, we proposed an optimization technique. We assume the system variables and performance of a whole system as follows. PID gains of two controllers for skew and feeding speed are system variables. System performance is both skew and feeding speed. We simulates to making mathematical correlation using global Kriging interpolation. To find appropriate value of system variables, optimization method is simulation in sequence as following method. First, the optimization solver simulates with DOE (design of experiment) tables to find correlation equation of both system variable and performances. Then, the solver guesses the appropriate values and simulates if the system variables are appropriate or not. If the result of validation doesn't satisfy the convergence and iteration tolerance, the solver makes a new Kriging models and iterates this sequence until satisfy the tolerances.

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

Anti-shock Controller Design for Optical Disk Drive Systems with Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 제어기를 이용한 Anti-Shock 제어기 설계)

  • Baek, Jong-Shik;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.675-677
    • /
    • 2004
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, dead-zone nonlinear element is used for nonlinear controller and PID control method is used for linear controller. Although this strategy improves anti-shock performance, it has a narrow stability bound. In this paper, we propose dead-zone with saturation nonlinear element for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher gain of dead-zone than the controller with dead-zone only. In the linear controller design, we show that lead-lag control has improved stability margin over PID control. Numerical simulation results show that the proposed method can get better performance to the external shock than previously proposed method.

  • PDF

Design of Robust FPID Controller and Control Characteristics for Load Frequency Control in Power System (전력시스템의 부하주파수제어를 위한 강인한 FPID제어기의 설계와 제어특성)

  • Moon, Young-Moon;Kim, Hae-Jae;Ahn, In-Mo;Joo, Seok-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.28-30
    • /
    • 1999
  • This paper proposes a robust FPID(Fuzzy Proportional Integral Derivative) controller for the LFC(load frequency control) of 2-area power system. The PID gain parameters of the proposed robust FPID controller are self-tuned by PSGM(Product Sum Gravity Method) which is very similiar to human's inference procedures. As the results of simulation, the proposed FPID controller against various load disturbances shows that it is superior to the conventional control techniques such as optimal, PID and fuzzy control in the response characteristics of frequency and tie line power flow.

  • PDF

Design of variable controller for WMR using a Neural Network (신경회로망을 이용한 WMR의 가변제어기 설계)

  • Kim, Kyu-Tae;Kim, Sung-Hoi;Park, Jong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

The Study on ATO of Urban Railway Considering Unknown Disturbance (미지의 외란을 고려한 도시철도차량의 ATO를 위한 연구)

  • Byun, Yeun-Sub;Han, Seong-Ho;Kim, Gil-Dong;Lee, Byung-Song;Han, Young-Jae;Baek, Jong-Hyen;Park, Hyun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.421-423
    • /
    • 1999
  • The function of the automatic train operation(ATO) system is to regulate the train ride comfort during start, acceleration and deceleration and execute operation of constant speed travelling and fixed point parking. The mathematical model for the train is presented by considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance and so on. The speed control of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control performance and compare its performance with that of a PID-type ATO control system under the disturbances. Simulation results show that the control performance of gain scheduled control for ATO system is better than that of the conventional PID controller.

  • PDF

The speed regulation and fixed point parking control of urban railway ATO considering unknown running resistance (미지의 주행저항을 고려한 도시철도차량 ATO의 속도추종 및 정밀정차 제어)

  • 변윤섭;한성호;김길동;백광선;한영재
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.280-287
    • /
    • 1999
  • An automatic train operation(ATO) system executes the operation of constant speed travelling and fixed point parking by using microprocessors instead of drivers manual operation. This paper describes the mathematical model for the train considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance, and so on. The speed controller of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control and fixed point parking performance and to compare its performance with that of a PID-type ATO control system under disturbances. Simulation results show that the control performance of gain scheduled control scheme fur ATO system is better than that of the conventional PID controller.

  • PDF

The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area (넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구)

  • Jeong, Hwang Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.