• Title/Summary/Keyword: PID control gain

Search Result 268, Processing Time 0.027 seconds

Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling (퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙)

  • Ha, Cheol-Keun;Ahn, Sang-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.

Design of a Fuzzy decision maker for gain-tuning of the PID controller with signal of only (출력 신호만에 의한 PID제어기 이득 조절용 Fuzzy판단자의 설계)

  • Jeong, K.C.;Kim, M.S.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.496-498
    • /
    • 1998
  • This paper presents a mathod of reducing hunting size or steady state error occurred in the output signals via regulating the PID controllers gains. The PID controllers are widely used in industrial processes. Such processes have several inherent features like continuous operation, fixed set value, and difficulty in applyirty test signals. Thus, this paper suggests fuzzy rules of reducing hunting magnitude or steady state error using output signals only. Such an intelligent tuning technique utilizes both the experts, experience and control engineers' theortical background. For two kinds of systems such as temperature or DC motors speed control, we showed the validity of proposed method in this paper.

  • PDF

Robust Control of Uncertainty Systems by Fuzzy Auto-Tuning (Fuzzy 자동동조에 의한 불확실성 공정의 견실제어)

  • Ryu, Y.G.;Choi, J.N.;Kim, J.K.;Mo, Y.S.;Hwang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.504-506
    • /
    • 1999
  • In this paper, we propose a method which control parametric uncertainty systems using PID controller by fuzzy auto tuning. We get the error and the error change rate of plant output correspond to the initial value of parameter using the Ziegler-Nickols tuning and determine the new proportional gain$(K_p)$ and the integral time $(T_i)$ from fuzzy tuner by the error and error change rate of plant output as a membership function of fuzzy theory. The Fuzzy Auto-tuning algorithm for PID controller operate to adapt variable parameter of plant in parametric uncertainty systems. It is shown this method considerably improve the transient response at computer simulation.

  • PDF

Gain Optimization of Kinematic Control for Wire-driven Surgical Robot with Layered Joint Structure Considering Actuation Velocity Bound (와이어로 구동하는 적층형 다관절 구조를 지닌 수술 로봇의 구동 속도를 고려한 기구학적 제어기의 게인 최적화)

  • Jin, Sangrok;Han, Seokyoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.212-220
    • /
    • 2020
  • This paper deals with a strategy of gain optimization for the kinematic control algorithm of a wire-driven surgical robot. The proposed controller consists of the closed-loop inverse kinematics with the back-calculation method. The closed-loop inverse kinematics has 18 PID control gains, and the back-calculation method has 6 gains. An efficient strategy is designed to optimize 18 values first and then the remaining 6 values. The optimal gain sets are searched under the step input with performance indices. In this gain optimization, the objective function is defined as the minimum value of signal-to-noise ratio of the performance indices for 6 DoF (Degree-of-Freedom) motion that is based on the Taguchi method, and the constraints are applied to obtain stable responses for each motion evenly. The gain sets obtained are verified by simulations using the test trajectories. In comparative results, the optimal gain value based on the performance index combined with ISE (integral of square error) and settling time showed the best control performance.

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

Distributed Control of the Arago's Disc System with Gain Scheduler

  • Ibrahim, Lateef Onaadepo;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • Arago's disk system consists of a speed controller of the DC motor (inner loop controller) and a position controller of the magnetic bar angle (main controller), which are implemented by the design of the PI and PID controller, respectively. First, we analyzed the nonlinear characteristics of the Arago disk system and found the operating point range of three locations as a result. In this paper, a gain scheduler method was applied to guarantee a constant control performance in the range of $0{\sim}130^{\circ}C$, and a structure to change the controller according to the control reference value based on the previously obtained operating points was experimentally implemented. The Distributed Control Systems (DCS) configuration using the Controller Area Network (CAN) was used to verify the proposed method by improving the operational efficiency of the entire experimental system. So, simplicity of the circuit and easy diagnosis were achieved through a single CAN bus communication.

  • PDF

Tuning PID Controllers for Unstable Systems with Dead Time based on Dual-Input Describing Function(DIDF) Method (DIDF를 적용한 PID 제어기의 파라미터 설정법 - 불감시간을 가지는 불안정한 시스템의 경우)

  • Choe, YeonWook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.509-518
    • /
    • 2014
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. Especially the deign of PID controller for unstable processes with dead time(UPWDT) is even more difficult due to various reasons. Generally the existing design procedures for UPWDT involve deriving formulas to meet gain and phase margin specifications, or using inner loop to stabilize UPWDT before applying PID controller. In this paper, the dual-input describing function(DIDF) method is proposed, by which the performance and robustness of the closed-loop system can be improved. The method is based on moving the critical point (-1+j0) of Nyquist stability to a new position arbitrarily selected on the complex plane. This can be done by determining appropriate coefficients of the DIDF. As a result, we can easily determine parameters of PID-type controller by using existing conventional tuning methods for stable or unstable systems. Simulation results are included to show the effectiveness of the proposed method.

Zero Power Control for an Attraction Type Magnetic Levitation System using Disturbance Observer (흡인식 자기부상 시스템의 외란관측자를 이용한 최소전력 부상제어)

  • Ahn, Joon-Seon;Yu, Sun-Jong;Kim, Sol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.41-47
    • /
    • 2009
  • In this paper, authors performed improvement of control characteristics of an attraction type magnetic levitation system. The attraction type magnetic levitation system has an inherent instability in the system, therefore its controller must have not only proportional-integral gain but also differential gain additionally. In this paper, authors were proposed control algorithm using disturbance observer(DOB) on feedback signal. The computer simulation and experiments were performed for its verification.

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF