• Title/Summary/Keyword: PID Feedback

Search Result 274, Processing Time 0.024 seconds

Temperature Control of a Reheating Furnace using Feedback Linearization and Predictive Control

  • Park, Jae-Hun;Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.1-27
    • /
    • 2001
  • Reheating furnace is a facility of heating up the billet to desired high temperature in the hot charge rolling process and it consists of 3 zones. Temperature control of reheating furnace is essential for successful rolling performance and high productivity. Mostly, temperature control is carried out using PID controller However, the PID control is not effective due to the nonlinearity of the reheating furnace(i.e, presence of the interference of neighboring zones and slow response of temperature etc.). In this paper, feedback linearization method is applied to obtain a linear model of the reheating furnace. Then, controller is designed using simple predictive control method. The effectiveness of this strategy is shown through simulations.

  • PDF

Stereo Vision Based Balancing System Results

  • Tserendondog, Tengis;Amar, Batmunkh;Ragchaa, Byambajav
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Keeping a system in stable state is one of the important issues of control theory. The main goal of our basic research is stability of unmanned aerial vehicle (quadrotor). This type of system uses a variety of sensors to stabilize. In control theory and automatic control system to stabilize any system it is need to apply feedback control based on information from sensors. Our aim is to provide balance based on the 3D spatial information in real time. We used PID control method for stabilization of a seesaw balancing system and the article presents our experimental results. This paper presents the possibility of balancing of seesaw system based on feedback information from stereo vision system only.

Vibration and precision position control of dual actuators with parallel type piezoactuator (이단 압전 구동기를 가진 이중 구동기의 진동 및 정밀위치제어)

  • Lee, Yong-Gwon;Cho, Won-Ik;Yang, Hyun-Suk;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.475-480
    • /
    • 2000
  • A new positioning mechanism with Parallel type actuator using piezoelectric material and with dual type actuators using voice coil motor (VCM) and piezoactuator is proposed for optical disk drive or near-field recording type drive, and high speed position and vibration control are investigated. Parallel type bimorph piezoactuator is used as a fine motion actuator with self-sensing technique, which allows a piezoelectric material to concurrently sense and actuate in a closed loop frame work, and positive position feedback control algorithm is adopted to further control residual vibration. For positioning control of VCM, PID control algorithm is adopted.

  • PDF

Design of a Precession Controller of a Magnetic Bearing System for a High Vacuum TMP (고진공 터보 분자 펌프용 자기베어링 시스템의 후방향 원추모드(Precession) 제어기 설계)

  • 배완성;노승국;박종권;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.298-303
    • /
    • 2004
  • The active magnetic bearing system for a TMP consists of four couples of magnets, five gap sensors with its amplifiers and a digital PID controller. For stabilizing and providing damping, digital PID controller is applied for each control axes and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor. Therefore in this paper, a digital controller of magnetic bearing for a TMP is design and examined.

  • PDF

CAN-based Feedback Control System Applied to Korean high-speed Train Pressurization System considering Network Delay (지연시간이 고려된 CAN 기반 피드백 제어시스템의 한국형 고속전철 여압시스템 적용)

  • Kwak, Kwon-Chon;Kim, Hong-Ryeol;Kim, Joo-Min;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2445-2447
    • /
    • 2002
  • In this paper, CAN-based feedback control system is proposed for the pressurization system of korean high-speed train. The control performance of the system is evaluated. According to the requirement of the pressurization system A process model considering network delay and an adaptive PID control method based on the process model are proposed here. And it is shown that the proposed adaptive PID control method considering the network delay has on adequate feature compared to some other existing methods consequently it can be considered to be applied the pressurization system of korean high-speed train.

  • PDF

Stable PID Tuning for Integrating Processes using sensitive function $M_{s}$ (적분공정을 위한 민감도 함수 $M_{s}$를 이용한 안정된 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.61-66
    • /
    • 2007
  • PID control is windely used to control stable processes, however, its application to integrating processes is less common. In this paper we proposed a simple PID controller tuning method for integrating processes with time delay to meet a stable specification. With the proposed PID tuning method, we can obtain stable integrating processes using PD controller in inner feedback loop and a loop transfer function with desired stable specification. This guarantees bout robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method to other methods.

Optimal PID Control for Temperature Control of Chiller Equipment (칠러장비의 온도제어를 위한 최적 PID 제어)

  • Park, Young-shin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.131-138
    • /
    • 2022
  • The demand for chiller equipment that keeps each machine at a constant temperature to maintain the best possible condition is growing rapidly. PID (Proportional Integral Derivation) control is a popular temperature control method. The error, which is the difference between the desired target value and the current system output value, is calculated and used as an input to the system using a proportional, integrator, and differentiator. Through such a closed-loop configuration, a desired final output value of the system can be reached using only the target value and the feedback signal. Furthermore, various temperature control methods have been devised as the control performance of various high-performance equipment becomes important. Therefore, it is necessary to design for accurate data-driven temperature control for chiller equipment. In this research, support vector regression is applied to the classic PID control for accurate temperature control. Simulated annealing is applied to find optimal PID parameters. The results of the proposed control method show fast and effective control performance for chiller equipment.

Robust digital controller for robot manipulators

  • Ishihara, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1671-1676
    • /
    • 1991
  • Direct digital design of computed torque controllers for a robot manipulator is discussed in this paper. A simple discrete-time model of the robot manipulator obtained by Euler's method is used for the design. Taking account of computation delay in the digital processor, we propose predictor-based designs of the PD and PID type controllers. The PID type controller is designed based on a modified version of the discrete-time integral controller proposed by Mita. For both controllers, the same formulas can be used to determine the feedback gains. A simulation example is presented to compare the robustness of the proposed controllers against physical parameter variations.

  • PDF

A study of the position control of the BALL-HOOP system (BALL-HOOP시스템의 위치 제어에 관한 연구)

  • 주해호;이훈구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.282-285
    • /
    • 1989
  • This paper presents a new algorithm for position control of the BALL-HOOP system driven by th D.C. servo motor-through the micro computer simulation. The Stale Feed back + PID control algorithm is proposed. This algorithm performs that the settling time is faster and overshoot is decreased more remarkably than the PID and the State Feedback algorithm alone. In this simulation the difference equations are used to calculate the output of the control system.

  • PDF

On-line Induction of Fermentation with Recombinant Cells: Part II. Control Algorithm and Software Development (유전자 재조합 세포 발효의 온.라인 유도 : 제 2부. 제어 알고리즘 및 소프트웨어 개발)

  • 이철균;최차용
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.203-207
    • /
    • 1989
  • Software for the on-line feedback control of such variables as DO and temperature was developed and tested successfully for a real fermentation system. Several aspects like Pl, PID, DSC, and DDC were incorporated into the algorithm. Any kind of on-line computer control system can be successfully implemented without much difficulty.

  • PDF