• Title/Summary/Keyword: PID Feedback

Search Result 274, Processing Time 0.036 seconds

A simple method for treating nonlinear control systems through state feedback

  • Han, Kyeng-Cheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.931-933
    • /
    • 1989
  • If the nonlinear term in a nonlinear control system equation can be deleted by state feedback control, the original system becomes a linear system. For this linear control system, many well known methods may be used to handle it, and then reverse it back to nonlinear form. Many problems of nonlinear control systems can be solved in this way. In this paper, this method will be used to transfer the identification problem of nonlinear systems into a linear control problem. The nonlinear observer is established by constructing linear observer. Then the state control of nonlinear systems is realized. Finally, the technique of the PID controller obtained by using bang-bang tracker as a differentiator provides a stronger robust controller. Even though the method in this paper may not theoretically perfect, many numerical simulations show that it is applicable.

  • PDF

Control System Design for Precision Grinding (정밀 연삭가공을 위한 제어시스템 설계)

  • 오창진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.453-458
    • /
    • 2000
  • Design of an in-process feedback control system has been studied for precision grinding. A grinding system consists of a grinding tool, a turn table and a disk-shaped workpiece on the table is taken as an object. A grinding process model has been deduced which gives some reasoning about the process errors. In the control system the tool position is actively controlled by an electro-magnetic actuator in-process. The ground error is feedback to compose a closed-loop control system and an optimal PID controller is applied. Some control performances such as transient response and disturbance such as transient response and disturbance attenuation have been examined, which convinces the effectiveness of the control. Some methods for implementation of the control. Some methods for implementation of the control have been suggested from a standpoint of practical application.

  • PDF

Precision Position Control of Piezoelectric Actuator Using Feedforward Hysteresis Compensation and Neural Network (히스테리시스 앞먹임과 신경회로망을 이용한 압전 구동기의 정밀 위치제어)

  • Kim HyoungSeog;Lee Soo Hee;Ahn KyungKwan;Lee ByungRyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.94-101
    • /
    • 2005
  • This work proposes a new method for describing the hysteresis non-linearity of a piezoelectric actuator. The hysteresis behaviour of piezoelectric actuators, including the minor loop trajectory, are modeled by geometrical relationship between a reference major loop and its minor loops. This hysteresis model is transformed into inverse hysteresis model in order to output compensated voltage with regard to the given input displacement. A feedforward neural network, which is trained by a feedback PID control module, is incorporated to the inverse hysteresis model to compensate unknown dynamics of the piezoelectric system. To show the feasibility of the proposed feedforward-feedback controller, some experiments have been carried out and the tracking performance was compared to that of simple PTD controller.

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF

Implementation of the robust speed control system for DC servo motor using TDF compensator method (2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현)

  • Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving (종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.

Digital Linear Control System for a Magnetic Bearing System of a High Vacuum Turbomolecular Pump (고진공 터보 분자펌프용 자기베어링 시스템의 디지털 선형 제어시스템)

  • Ro, Seung-Kook;Kyung, Jin-Ho;Park, Jong-Kweon;Nam, Woo-Ho;Koh, Deug-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.256-264
    • /
    • 2010
  • In this paper, a digital controller of magnetic bearing system for a high vacuum turbomolecular pump (TMP) is designed and examined. For stabilizing and providing damping in magnetic bearing, the digital PID controller is applied for each 5 control axes, and the inter-axis cross feedback controller is also applied to suppress low frequency vibration caused by gyroscopic moment of the rotor at high speed of rotation. The fabricated rotor-shaft has its first flexible natural frequency lower than maximum speed, about 614Hz, so the two lead filters are applied to increase damping of flexible mode. Notch filters with rotating frequency were selected to reduce vibration of the pump housing caused by unbalance load. The implemented controllers are verified by examination of frequency response and rotating test up to 40,000 rpm, which is higher than critical speed of backward flexible mode.

Development of Control Algorithm for Ship Berthing and Unberthing Systems Using a Joystick (조이스틱을 이용한 선박의 입출항 및 접이안 시스템의 제어 알고리즘 개발)

  • Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Won, Moon-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.325-332
    • /
    • 2007
  • This study develops a control algorithm on berthing/unberthing system using a joystick for ships with thrusters and a rudder. A nonlinear mathematical model for low speed maneuvering of typical container ships is used to develop a MIMO(multi-input multi-output) nonlinear control algorithm for velocity feedback joystick control. Also a virtual HILS(hardware in the loop simulation) software program for berthing/unberthing is developed to test the performance of the nonlinear and a PID control algorithm. The program is developed using LabWindow/CVI, and a user can see current position and desired trajectory of ship in a monitor, then he can control forward and yaw velocities of a ship using a joystick. The simulation results show that the nonlinear mfd the PID controller have superior performance over a simple open loop joystick control algorithm.

Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System (위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계)

  • Kim, Jong-Hyeok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF