• 제목/요약/키워드: PID제어기

Search Result 179, Processing Time 0.029 seconds

A Fuzzy PID Controller Type Autopilot System for Route-Tracking of Ships (선박의 항로추종을 위한 펴지 PID 제어기형 오토파이럿 시스템)

  • Kim, Jong-Hwa;Ha, Yun-Su;Lee, Byung-Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.760-769
    • /
    • 2006
  • This paper proposes an autopilot system using a fuzzy PID controller to satisfy performances required for the automatic navigation of ships under various marine circumstances. The existing autopilot system using a PD type controller has difficulties in eliminating a steady-state error and compensating nonlinear characteristics of ships. The autopilot system using the proposed fuzzy PID controller has a self-tuning ability, an ability to compensate nonlinear characteristics, and an ability to turn at constant angular velocity. Therefore. it can naturally make a steady-state error zero, compensate nonlinear dynamic effect of ships, have an adaptability to parameter variation owing to shallow water effect, and have an ability to turn ship's course rapidly without overshoot through procedures of acceleration, constant, and deceleration of angular velocity for large course-changing.

Design of $H_{\infty}$Controller for the inverted pendulum system (도립진자 시스템의 $H_{\infty}$ 제어기 설계)

  • Seo, Kang-Myun;Kang, Moon-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1796-1803
    • /
    • 2006
  • This Paper describes a systematic method for designing the $H_{\infty}$ controller for the inverted pendulum which is a nonlinear and single-input double-outputs system. In particular, the open-loop system is conbined with a pre-filter to shape the open-loop transfer function for the sensitivity function ind the complementary sensitivity function to be kept the desirable frequency characteristics. Consequently, the loop shaping technique of the open-loop transfer function reduces the impacts of the model uncertainties, measurement noises and exogenous disterbances on the dynamic characteristics of the inverted pendulum. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method.

Study on the control of VCM and its application to the vibration isolator (VCM의 제어 및 제진 장치 응용에 관한 연구)

  • Kim, Jin-Man;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The degradation of durability and increase of fatigue on the ship are mainly caused by vibration of the engine and rotating machineries. The damper to minimize the influence from vibration is usually attached between the machineries and its base. General damper applied on the vessel is passive damper which is designed to attenuate specified frequency signals, i.e, high frequency vibration signals. But it is hard to anticipate its performance for low frequency signals. In this research, active vibration isolator using VCM is developed to suppress wide band vibration signals. Routh-Huritz's stable condition, ultimate sensitivity method and parameter tuning are applied to derive PID parameters and 2 and 4 phase choppers are also adapted to drive VCM. Simulation and experiments are executed to confirm the effectiveness of the proposed control schemes.

Sliding Mode Control Based on 3-Loop of a Pneumatic Motor (공압모터의 3-루프 기반 슬라이딩 모드 제어)

  • Kim, Geun-Mook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6446-6451
    • /
    • 2014
  • Pneumatic motors are quite attractive for many applications because of their competitive price, light-weight, easy assembly, safety in hazardous areas as well as other features, such as a good force/weight ratio and operation in exceptionally harsh environments. In contrast to these advantages, pneumatic motors have limited use in applications, particularly those requiring a fast and precise response. These undesirable characteristics are due to the high compressibility of air and from the nonlinearities in pneumatic systems. This paper presents the sliding mode controller based on 3-loop(SMCB3L), which increases the load stiffness to control the rotation angle of a pneumatic motor. The characteristics for the step responses and load disturbances of the proposed controller were compared with the conventional PID controller. The experimental results showed that a properly designed SMCB3L is capable of high positioning accuracy within ${\pm}0.05mm$. Furthermore, the load stiffness of the SMCB3L can be improved 3.5 fold compared to that of PID controllers.

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning (이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어)

  • Park, Sang-Hyuk;Choi, Won-Hyuck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.

Tight Path Following PID Controller for a Vehicle with Time Delay (비행체 시간지연을 고려한 정밀경로추종 PID 제어기법)

  • Rhee, Ihn-Seok;Park, Sang-Hyuk;Lee, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.618-626
    • /
    • 2011
  • In order to complete missions in a complicated terrain or highly dangerous area, an unmanned aerial vehicle(UAV) needs a fine controller to precisely follow the desired path. A PID controller used for the path following feeds forward path curvature information to the control input to improve the path following performance. High gain for PID controller is necessary to follow path tightly. However the high gain could cause instability or performance degradation when the vehicle has slow dynamics. We present PID controller design method which considers response delay of vehicle as well as path curvature. In order to obtain path curvature the desired path is described as a 3rd order polynomial by applying cubic spline interpolation. We apply the proposed controller to the path following of a UAV which is operated in high altitude and has very slow lateral dynamics. The lateral dynamics are modelled as a first order delayed system in the controller design. Nonlinear simulation shows the UAV with proposed controller follows an arbitrary path very tightly.

Control System of Turbofan Engine with Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 제어시스템)

  • Bae, Kyoungwook;Min, Chanoh;Cheon, Bongkyu;Lee, Changyong;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Surge phenomenon can be occurred in a compressor when the performance of turbofan engine for an aircraft is changed considerably such as take-off phase. This study is aimed to avoid surge phenomenon. This paper propose the PID and Fuzzy control System for the turbofan engine with control inputs, the VIGV(Variable Inlet Guide Vane) in closed loop, and the fuel mass flow in open loop. We design the Dynamic modeling, NPSS S-function, which is connection block of simulink between NPSS(Engine analysis program) and Simulink. Finally, we certify the performance to prevent a serge phenomenon in the VIGV control system using the both methods, PID and fuzzy.

Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine (Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링)

  • Lee, Bo-Hoon;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.269-275
    • /
    • 2013
  • In this paper, a new modeling method of a magnetic levitation(Maglev) system using extreme learning machine(ELM) is proposed. The linearized methods using Taylor Series expansion has been used for modeling of a Maglev system. However, the numerical method has some drawbacks when dealing with the components with high nonlinearity of a Maglev system. To overcome this problem, we propose a new modeling method of the Maglev system with electro magnetic suspension, which is based on ELM with fast learning time than conventional neural networks. In the proposed method, the initial input weights and hidden biases of the method are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose generalized inverse. matrix Experimental results show that the proposed method can achieve better performance for modeling of Maglev system than the previous numerical method.

Robut DC Servo Motor Position Control System based on Acceleration Control (가속도제어에 근거한 강인한 직류서보전동기 위치제어계)

  • 박태건;이기상
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.101-110
    • /
    • 1995
  • In this paper, a DC servo motor position control system based on acceleration control is proposed. The proposed control system consists of an acceleration controller and an auto-tuqing fuzzy PID controller. The auto-tuning fuzzy PID controller provides corrections for an acceleration reference to remove the effect of parametric uncertainties. And it comprises of the expert system which performs the automatic tuning of the PID controller parameters and the conventional PID controller. Expermental results demonstrate strate thi~tth e proposed overall control system has robust properties and good control performances with regard to unmeasurable disturbances and parameter variations. Therefore, the proposed control scheme enhances the applicability of an acceleration control approach and especially performs accurate position control under such an operating environment that model uncertainties exist and/or load, etc. change significantly.

  • PDF

Decentralized Adaptive Control Scheme for Magnetically Levitated Fine Manipulators (자기부상식 미세구동기의 비집중 적응제어기법)

  • Shin, Eun-Joo;Song, Tae-Seung;Ryu, Joon;Choi, Kee-Bong
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.250-258
    • /
    • 1999
  • This paper presents a decentralized adaptive controller design for a Magnetically Levitated Fine Manipulator to follow the given trajectory as close as possible in spite of coupling effects between motion axes(degree of freedoms or subsystems). The present controller consists of two parts: the model reference controls based on known subsystems and the local adaptive controls. The former stabilizes the motion of the manipulator so as to follow that of the reference model. The latter reduces tracking errors due to coupling disturbances by adjusting the local gains to such levels that override interactions and assure the stability of the overall system. Through several experimental results, it has been shown that the decentralized adaptive control scheme has better tracking performances comparing to the PID controller case as well as good disturbance(coupling) rejection property.

  • PDF