• Title/Summary/Keyword: PI3K

Search Result 2,243, Processing Time 0.033 seconds

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

A design of Fuzzy PI+Fuzzy D Controller for Control of 3 Phase Induction Motor (3상 유도모터의 제어를 위한 퍼지 PI+퍼지 D 제어기의 구현)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Seung-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.713-716
    • /
    • 2007
  • In this paper, we consider one of robust control system, fuzzy PI+fuzzy D controller dealing with noise, load, changed parameters of plant. We apply PI+D controller with a design for output of differential function and, we plan fuzzy controller with input for PID parameter of PI+D controller so We design control system meet with the change of environment with robust in relation to change of parameter. Fuzzy control is possessed of easy 4 rules and membership function and We design fuzzy PI+fuzzy D controller. Plant of this paper make a choice of 3 phase induction motor.

  • PDF

Studies on Resistance to anthracnose (Colletrichum dematium) in Pepper (고추의 탄저병(炭疽病) 저항성(抵抗性)에 관(關)한 연구(硏究))

  • Park, Hyoun Kyu;Kim, Byung Soo;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.7-11
    • /
    • 1986
  • Nine Korean local cultivars and 34 PI lines of pepper were tested for resistance to anthracnose (Colletotrichum dematium). Red ripe fruits were harvested, punctured and inoculated by spraying and dropping a conidial suspension of Colletotrichum dematium. Resistance was evaluated by measuring the diameter of ripe rot lesions developed on and around the puncture. The results obtained are as follows : 1. PI 201232, PI 224451, PI 257044, PI 257119, PI 257099, PI 224433, PI 244668, PI 257102, PI 173877, Namji, Cheongryong, and Seodong were the least diseased and considered to be resistant. 2. PI 241670, PI 244670, and PI 224423 were the most diseased and considered to be susceptible. 3. Others were in between the two extremes and considered to be intermediate.

  • PDF

Roles of PI3K and Rac Pathways in H-ras Induced Invasion and Motility

  • Ilchung Shin;Kim, Seonhoe;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.144-144
    • /
    • 2003
  • Phosphatidylinositol 3-kinase (PI3K) and Rac play important roles that regulate cellular functions including cell survival and .migration. In the present study, we investigated the functional roles of PI3K and Rac1 pathways in H-ras-induced invasive phenotype and motility of MCF10A cells.(omitted)

  • PDF

Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model

  • Yothaisong, Supak;Thanee, Malinee;Namwat, Nisana;Yongvanit, Puangrat;Boonmars, Thidarut;Puapairoj, Anucha;Loilome, Watcharin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10463-10468
    • /
    • 2015
  • Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the $p85{\alpha}$-regulatory and $p110{\alpha}$-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of $Wnt/{\beta}$-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and ${\beta}$-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of ${\beta}$-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and $Wnt/{\beta}$-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.

Some Properties of the Closure Operator of a Pi-space

  • Mao, Hua;Liu, Sanyang
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.311-322
    • /
    • 2011
  • In this paper, we generalize the definition of a closure operator for a finite matroid to a pi-space and obtain the corresponding closure axioms. Then we discuss some properties of pi-spaces using the closure axioms and prove the non-existence for the dual of a pi-space. We also present some results on the automorphism group of a pi-space.

A relative mod (H, K) nielsen number

  • Cho, Hyang-Kam;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.371-387
    • /
    • 1995
  • Let X be a compact polyhedron, H a normal subgroup of the fundamental group $\pi_1(X)$ of X and $f : X \longrightarrow X$ a selfmap such that $f_piH \subset H$, where f_\pi : \pi_1(X) \longrightarrow \pi_1(X)$ is the induced homomorphism by f.

  • PDF

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

Elevated RalA activity in the hippocampus of PI3Kγ knock-out mice lacking NMDAR-dependent long-term depression

  • Sim, Su-Eon;Lee, Hye-Ryeon;Kim, Jae-Ick;Choi, Sun-Lim;Bakes, Joseph;Jang, Deok-Jin;Lee, Kyungmin;Han, Kihoon;Kim, Eunjoon;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.103-106
    • /
    • 2013
  • Phosphoinositide 3-kinases (PI3Ks) play key roles in synaptic plasticity and cognitive functions in the brain. We recently found that genetic deletion of $PI3K{\gamma}$, the only known member of class IB PI3Ks, results in impaired N-methyl-D-aspartate receptor-dependent long-term depression (NMDAR-LTD) in the hippocampus. The activity of RalA, a small GTP-binding protein, increases following NMDAR-LTD inducing stimuli, and this increase in RalA activity is essential for inducing NMDAR-LTD. We found that RalA activity increased significantly in $PI3K{\gamma}$ knockout mice. Furthermore, NMDAR-LTD-inducing stimuli did not increase RalA activity in $PI3K{\gamma}$ knockout mice. These results suggest that constitutively increased RalA activity occludes further increases in RalA activity during induction of LTD, causing impaired NMDAR-LTD. We propose that $PI3K{\gamma}$ regulates the activity of RalA, which is one of the molecular mechanisms inducing NMDAR-dependent LTD.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.