• Title/Summary/Keyword: PI3K/AKT

Search Result 398, Processing Time 0.03 seconds

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice (C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과)

  • Kim, Seon Young;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.570-579
    • /
    • 2019
  • Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.

Effect of Cirsii Japonici Herba on LPS-induced Inflammation in Mouse BV2 Microglial cells (대계(大薊)가 LPS로 유도된 Mouse BV2 Microglial cells의 염증반응에 미치는 영향)

  • Kim, Young-Sun;Lee, Seoung-Geun;Lee, Key-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.1048-1060
    • /
    • 2008
  • Cirsii Japonici Herba(CJ) is a wild perennial herb found in many areas of Korea as well as China and Japan, which has been used to treat bleeding and inflammation. Silibinin is the main flavonoid extracted from milk thistle (Cirsii Japonici Herba). It exhibits potent antioxidant activity and anti-inflammatory effect. In this study, the effect of CJ and silibinin extract on lipopolysaccharide-induced inflammation was investigated using MTS assay, RT-PCR, western blot, and nitric oxide detection on mouse BV2 microglial cell lines. In the present results, CJ and silibinin extract suppressed nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of COX-2 and iNOS gene expression in BV2 cells. Moreover, CJ and silibinin also repressed some lipopolysaccharide-induced signaling molecules. Importantly, catalase-induced COX-2 and iNOS expression needed activations of $NF-{\kappa}B$, PI3K/Akt, and MAPK, which were important for the transcriptional up-regulation of COX-2 and iNOS. CJ and silibinin interaction on BV2 cells down-regulated $NF-{\kappa}B$-dependent proinflammatory cytokine (IL-2,IL-6) expression. They are involved in the regulation of inflammatory responses. These data shows that CJ and silibinin exerts anti-inflammatory and analgesic effects, probably by suppression of COX-2 and iNOS synthase expression in BV2 microglial cells.

  • PDF

Improvement of blood glucose control in type 2 diabetic db/db mice using Platycodon grandiflorum seed extract (도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과)

  • Kim, Tae Yeong;Kim, Seok Joong;Imm, Jee-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • The biological activities of Platycodon grandiflorum (PG) root extracts have been studied intensively, whereas there are limited number of studies on PG seed extract (PGSE). PGSE was prepared by ethanol extraction, and its antidiabetic effect was evaluated in mice with type 2 diabetes (C57BLKS/J-db/db). Results indicated that the administration of high-dose PGSE (600 mg/kg, wb) significantly stabilized the blood glucose levels, as evidenced by the results of the oral glucose tolerance test. Mice treated with high-dose PGSE exhibited significantly lower serum hemoglobin A1c, insulin, and leptin levels after eight weeks of feeding trial (p<0.05). High-dose PGSE administration significantly improved glucose uptake in the femoral muscle of db/db mice by activating both IRS-1/PI3K/AKT/AS160 and AMPK phosphorylation pathways. GLUT4 translocation from the cytosol to the plasma membrane increased 1.7-fold in the PGSE high-dose group. These results suggest that PGSE has potential for development as an antidiabetic agent.

The study of blood transcriptome profiles in Holstein cows with miscarriage during peri-implantation

  • Zhao, Guoli;Li, Yanyan;Kang, Xiaolong;Huang, Liang;Li, Peng;Zhou, Jinghang;Shi, Yuangang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Objective: In this study, the transcriptome profile of cow experiencing miscarriage during peri-implantation was investigated. Methods: Total transcriptomes were checked by RNA sequencing, and the analyzed by bioinformatics methods, the differentially expressed genes (DEGs) were analysed with hierarchical clustering and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Results: The results suggested that serum progesterone levels were significantly decreased in cows that miscarried as compared to the pregnant cows at 18, 21, 33, 39, and 51 days after artificial insemination. The RNA sequencing results suggested that 32, 176, 5, 10, and 2 DEGs were identified in the pregnant cows and miscarried cows at 18, 21, 33, 39, and 51 d after artificial insemination. And 15, 101, 1, 2, and 2 DEGs were upregulated, and 17, 74, 4, and 8 DEGs were downregulated in the cows in the pregnant and miscarriage groups, respectively at 18, 21, 33, and 39, but no gene was downregulated at 51 d after artificial insemination. These DEGs were distributed to 13, 20, 3, 6, and 20 pathways, and some pathway essential for pregnancy, such as cell adhesion molecules, tumor necrosis factor signaling pathway and PI3K-Akt signaling pathway. Conclusion: This analysis has identified several genes and related pathways crucial for pregnancy and miscarriage in cows, as well as these genes supply molecular markers to predict the miscarriage in cows.

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Kinesin superfamily member 15 knockdown inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma

  • Yi Cai;Qianyue Lai;Xuan Zhang;Yu Zhang;Man Zhang;Shaoju Gu;Yuan Qin;Jingshen Hou;Li Zhao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.457-470
    • /
    • 2023
  • The aim of this study was to investigate the role of kinesin superfamily member 15 (KIF15) in nasopharyngeal carcinogenesis (NPC) and explore its underlying mechanisms. We employed various assays, including the CCK-8 assay, flow cytometry, the Transwell and scratch assay, Western blotting, and nude mice transplantation tumor, to investigate the impact of KIF15 on NPC. Our findings demonstrate that KIF15 plays a critical role in the proliferation, apoptosis, migration, and invasion of NPC cells. Furthermore, we discovered that silencing KIF15 inhibits cell proliferation, migration, and invasion while promoting apoptosis, and that KIF15's effect on NPC cell growth is mediated through the PI3K/AKT and P53 signaling pathways. Additionally, we showed that KIF15 promotes nasopharyngeal cancer cell growth in vivo. Our study sheds light on the significance of KIF15 in NPC by revealing that KIF15 knockdown inhibits NPC cell growth through the regulation of AKT-related signaling pathways. These findings suggest that KIF15 represents a promising therapeutic target for the prevention and treatment of NPC.

Radiation Response Modulation of GW572016 (EGFR/HER2 Dual Tyrosine Kinase Inhibitor) in Human Breast Cancer Xenografts (인간 유방암 세포 이식마우스에서 EGFR/HER2 복합 Tyrosine Kinase 억제제인 GW572016에 의한 방사선증진효과)

  • Kim, Yeon-Sil;Roh, Kwang-Won;Chae, Soo-Min;Mun, Seong-Kwon;Yoon, Sei-Chul;Jang, Hong-Seok;Chung, Su-Mi
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2007
  • Purpose: We examined the effect of the dual EGFR/HER2 tyrosine kinase inhibitor, GW572016, on EGFR/HER2 receptor phosphorylation, inhibition of downstream signaling and radiosensitization in either an EGFR or HER2 overexpressing human breast cancer xenograft. Materials and Methods: We established SCID mice xenografts from 4 human breast cancer cell line that overexpressed EGFR or HER 2 (SUM 102, SUM 149, SUM 185, SUM 225). Two series of xenografts were established. One series was established for determining inhibition of the EGFR/HER2 receptor and downstream signaling activities by GW572016. The other series was established for determining the radiosensitization effect of GW572016. Inhibition of the receptor and downstream signaling proteins were measured by the use of immunoprecipitation and Western blotting. For determining the in vivo radiosensitization effect of GW572016, we compared tumor growth delay curves in the following four treatment arms: a) control; b) GW572016 alone; c) radiotherapy (RT) alone; d) GW572016 and RT. Results: GW572016 inhibited EGFR, HER2 receptor phosphorylation in SUM 149 and SUM 185 xenografts. In addition, the p44/42 MAPK (ERK 1/2) downstream signaling pathway was inactivated by GW572016 in the SUM 185 xenograft. In the SUM 225 xenograft, we could not observe inhibition of HER2 receptor phosphorylation by GW572016; both p44/42 MAPK (Erk1/2) and Akt downstream signal protein phosphorylation were inhibited by GW572016. GW572016 inhibited growth of the tumor xenograft of SUM 149 and SUM 185. The combination of GW572016 and RT enhanced growth inhibition greater than that with GW572016 alone or with RT alone in the SUM 149 xenograft. GW572016 appears to act as an in vivo radiosensitizer. Conclusion: GW572016 inhibited EGFR/HER2 receptor phosphorylation and downstream signaling pathway proteins. GW572016 modestly inhibited the growth of tumor in the SUM 185 xenograft and showed radiosensitization in the SUM 149 xenograft. Our results suggest that a better predictor of radiation response would be inhibition of a crucial signaling pathway than inhibition of a receptor.

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation

  • Jeong, Dahye;Irfan, Muhammad;Kim, Sung-Dae;Kim, Suk;Oh, Jun-Hwan;Park, Chae-Kyu;Kim, Hyun-Kyoung;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • Background: Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods: To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ($[Ca^{2+}]_i$) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results: We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and $[Ca^{2+}]_i$ mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion: These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.