Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0180

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p  

Du, Jian (Department of Cadre Ward, The First Hospital of Jilin University)
Yang, Si-Tong (Department of Cadre Ward, The First Hospital of Jilin University)
Liu, Jia (Department of Cadre Ward, The First Hospital of Jilin University)
Zhang, Ke-Xin (Department of Cadre Ward, The First Hospital of Jilin University)
Leng, Ji-Yan (Department of Cadre Ward, The First Hospital of Jilin University)
Abstract
The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.
Keywords
H9c2 cell; heart failure; hypoxia; lncRNA GAS5; miR-142-5p;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang, F., Lee, J.T., Navolanic, P.M., Steelman, L.S., Shelton, J.G., Blalock, W.L., Franklin, R.A., and McCubrey, J.A. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603.   DOI
2 Chang, H., Li, C., Wang, Q., Lu, L., Zhang, Q., Zhang, Y., Zhang, N., and Wang, Y. (2017). QSKL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci. Rep. 7, 16986.   DOI
3 Dickinson, B.A., Semus, H.M., Montgomery, R.L., Stack, C., Latimer, P.A., Lewton, S.M., Lynch, J.M., Hullinger, T.G., Seto, A.G., and van Rooij, E. (2013). Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur. J. Heart Fail. 15, 650-659.   DOI
4 Adams, B.D., Parsons, C., Walker, L., Zhang, W.C., and Slack, F.J. (2017). Targeting noncoding RNAs in disease. J. Clin. Invest. 127, 761-771.   DOI
5 Ambrosy, A.P., Fonarow, G.C., Butler, J., Chioncel, O., Greene, S.J., Vaduganathan, M., Nodari, S., Lam, C.S.P., Sato, N., Shah, A.N., et al. (2014). The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63, 1123-1133.   DOI
6 Bader, A.G., Kang, S., Zhao, L., and Vogt, P.K. (2005). Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer. 5, 921-929.   DOI
7 Ballantyne, M.D., McDonald, R.A., and Baker, A.H. (2016). lncRNA/MicroRNA interactions in the vasculature. Clin. Pharmacol. Ther. 99, 494-501.   DOI
8 Cao, M.X., Jiang, Y.P., Tang, Y.L., and Liang, X.H. (2017). The crosstalk between lncRNA and microRNA in cancer metastasis: orchestrating the epithelial-mesenchymal plasticity. Oncotarget 8, 12472-12483.   DOI
9 Duval, M., Cossart, P., and Lebreton, A. (2017). Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin. Cell Dev. Biol. 65, 11-19.   DOI
10 Ellis, K.L., Cameron, V.A., Troughton, R.W., Frampton, C.M., Ellmers, L.J., and Richards, A.M. (2013). Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail. 15, 1138-1147.   DOI
11 Hagan, M., Zhou, M., Ashraf, M., Kim, I.M., Su, H., Weintraub, N.L., and Tang, Y. (2017). Long noncoding RNAs and their roles in skeletal muscle fate determination. Noncoding RNA Investig. 1. pii: 24. doi: 10.21037/ncri.2017.12.01.   DOI
12 Hirai, K., Hayashi, T., Chan, P.H., Basus, V.J., James, T.L., and Litt, L. (2003). Akt phosphorylation and cell survival after hypoxia-induced cytochrome c release in superfused respiring neonatal rat cerebrocortical slices. Acta Neurochir. Suppl. 86, 227-230.
13 Kim, W., and Kim, E.J. (2018). Heart failure as a risk factor for stroke. J. Stroke. 20, 33-45.   DOI
14 Ko, S.Y., Lin, I.H., Shieh, T.M., Ko, H.A., Chen, H.I., Chi, T.C., Chang, S.S., and Hsu, Y.C. (2013). Cell hypertrophy and MEK/ERK phosphorylation are regulated by glyceraldehyde-derived AGEs in cardiomyocyte H9c2 cells. Cell Biochem. Biophys. 66, 537-544.   DOI
15 Liu, L., Pang, X., Shang, W., Xie, H., Feng, Y., and Feng, G. (2019). Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle 18, 257-263.   DOI
16 Li, J., Wang, Y., Zhang, C.G., Xiao, H.J., Hou, J.M., and He, J.D. (2018). Effect of long non-coding RNA Gas5 on proliferation, migration, invasion and apoptosis of colorectal cancer HT-29 cell line. Cancer Cell Int. 18, 4.   DOI
17 Li, J., Yang, C., Li, Y., Chen, A., Li, L., and You, Z. (2018). LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation. Biosci. Rep. 38, BSR20171150.
18 Li, T., Xie, J., Shen, C., Cheng, D., Shi, Y., Wu, Z., Deng, X., Chen, H., Shen, B., Peng, C., et al. (2015). Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Res. 75, 3181-3191.   DOI
19 Long, Q.Q., Wang, H., Gao, W., Fan, Y., Li, Y.F., Ma, Y., Yang, Y., Shi, H.J., Chen, B.R., Meng, H.Y., et al. (2017). Long noncoding RNA Kcna2 antisense RNA contributes to ventricular arrhythmias via silencing Kcna2 in rats with congestive heart failure. J. Am. Heart Assoc. 6. pii: e005965. doi: 10.1161/JAHA.117.005965.   DOI
20 Mathieu, E.L., Belhocine, M., Dao, L.T., Puthier, D., and Spicuglia, S. (2014). [Functions of lncRNA in development and diseases]. Med. Sci. (Paris). 30, 790-796.   DOI
21 Mattick, J.S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2, 986-991.   DOI
22 Montes, M., and Lund, A.H. (2016). Emerging roles of lncRNAs in senescence. FEBS J. 283, 2414-2426.   DOI
23 Okamura, S., Arakawa, H., Tanaka, T., Nakanishi, H., Ng, C.C., Taya, Y., Monden, M., and Nakamura, Y. (2001). p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell 8, 85-94.   DOI
24 Schmidt, E.K., Fichelson, S., and Feller, S.M. (2004). PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors. BMC Biol. 2, 7.   DOI
25 Peng, Y., and Croce, C.M. (2016). The role of MicroRNAs in human cancer. Signal. Transduct. Target. Ther. 1, 15004.   DOI
26 Peyssonnaux, C., and Eychene, A. (2001). The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93, 53-62.   DOI
27 Pinti, M.V., Hathaway, Q.A., and Hollander, J.M. (2017). Role of microRNA in metabolic shift during heart failure. Am. J. Physiol. Heart Circ. Physiol. 312, H33-h45.   DOI
28 Smith, C.M., and Steitz, J.A. (1998). Classification of gas5 as a multismall-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol. Cellular Biol. 18, 6897-6909.   DOI
29 Tao, H., Zhang, J.G., Qin, R.H., Dai, C., Shi, P., Yang, J.J., Deng, Z.Y., and Shi, K.H. (2017). LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 386, 11-18.   DOI
30 Tu, J., Tian, G., Cheung, H.H., Wei, W., and Lee, T.L. (2018). Gas5 is an essential lncRNA regulator for self-renewal and pluripotency of mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res. Ther. 9, 71.   DOI
31 Voellenkle, C., van Rooij, J., Cappuzzello, C., Greco, S., Arcelli, D., Di Vito, L., Melillo, G., Rigolini, R., Costa, E., Crea, F., et al. (2010). MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol. Genomics 42, 420-426.   DOI
32 Vucicevic, D., Honoris, L., Raia, F., and Deng, M. (2018). Current indications for transplantation: stratification of severe heart failure and shared decision-making. Ann. Cardiothorac. Surg. 7, 56-66.   DOI
33 Zhang, Z., Zhu, Z., Watabe, K., Zhang, X., Bai, C., Xu, M., Wu, F., and Mo, Y.Y. (2013). Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differe. 20, 1558-1568.   DOI
34 Wang, M., Guo, C., Wang, L., Luo, G., Huang, C., Li, Y., Liu, D., Zeng, F., Jiang, G., and Xiao, X. (2018). Long noncoding RNA GAS5 promotes bladder cancer cells apoptosis through inhibiting EZH2 transcription. Cell Death Dis. 9, 238.   DOI
35 Wang, Y., and Kong, D. (2018). LncRNA GAS5 represses osteosarcoma cells growth and metastasis via sponging MiR-203a. Cell Physiol. Biochem. 45, 844-855.   DOI
36 Xu, T., Zhou, Q., Che, L., Das, S., Wang, L., Jiang, J., Li, G., Xu, J., Yao, J., Wang, H., et al. (2016). Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget 7, 12414-12425.   DOI
37 Zhao, R.B., Zhu, L.H., Shu, J.P., Qiao, L.X., and Xia, Z.K. (2018). GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury. Biochem. Biophys. Res. Commun. 497, 285-291.   DOI
38 Zhou, G., Li, C., Feng, J., Zhang, J., and Fang, Y. (2018). lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med. 8, 130-139.   DOI
39 Ziaeian, B., and Fonarow, G.C. (2016). Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368-378.   DOI
40 Xu, Y., and Xing, Y.Q. (2018). Long non-coding RNA GAS5 contributed to the development of glaucoma via regulating the TGFbeta signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 22, 896-902.