• 제목/요약/키워드: PI3-kinase

검색결과 354건 처리시간 0.027초

대장암 세포의 방사선저항성에 대한 p53의존성 PI3K의 역할 (Role of p53-dependent PI3K in Radioresistance of Colon Cancer Cells)

  • 이희관;김종석;권형철
    • 한국식품위생안전성학회지
    • /
    • 제25권3호
    • /
    • pp.258-262
    • /
    • 2010
  • Radiotherapy is one of the major therapies for cancer treatment. p53 acts as a central mediator of the cellular response to stressful stimuli, such as radiation. Recently it has been known that activation of the phosphatidylinositol-3-kinase (PI3K) pathway is associated with radioresistance. In this study, we investigated whether X-irradiation up-regulates PI3K in a p53-dependent manner in human colon cancer cells. In order to study this phenomenon, we have treated p53-wild type and p53-mutant type HCT116 cells with X-ray. Treatment of wild type HCT116 cells with 8 Gy resulted in a marked increase in PI3K (p85), which paralleled an increase in PTEN, a counterpart of PI3K. However, these effects of X-rays in the p53-mutant cells were not observed. These results suggest that the X-irradiation-induced up-regulation of PI3K/PTEN pathway is p53-dependent.

Auranofin accelerates spermidine-induced apoptosis via reactive oxygen species generation and suppression of PI3K/Akt signaling pathway in hepatocellular carcinoma

  • Hyun Hwangbo;Da Hye Kim;Min Yeong Kim;Seon Yeong Ji;EunJin Bang;Su Hyun Hong;Yung Hyun Choi;JaeHun Cheong
    • Fisheries and Aquatic Sciences
    • /
    • 제26권2호
    • /
    • pp.133-144
    • /
    • 2023
  • Auranofin is a US Food and Drug Administration (FDA)-approved anti-arthritis medication that functions as a thioredoxin reductase inhibitor. Spermidine, a polyamine present in marine algae, can exert various physiological functions. Herein, we examined the synergistic anticancer activity of auranofin and spermidine in hepatocellular carcinoma (HCC). Combined treatment with auranofin and spermidine suppressed cell viability more efficiently than either treatment alone in HCC Hep3B cells. The isobologram plotted by calculating the half maximal inhibitory concentration (IC50) values of each drug indicated that the two drugs exhibited a synergistic effect. Based on the analysis of annexin V and cell cycle distribution, auranofin and spermidine markedly induced apoptosis in Hep3B cells. Moreover, auranofin and spermidine increased mitochondria-mediated apoptosis by promoting mitochondrial membrane potential (Δψm) loss. Auranofin and spermidine significantly increased reactive oxygen species (ROS) production in Hep3B cells, and the blocking ROS suppressed apoptosis induced by spermidine and auranofin. In addition, auranofin and spermidine reduced the expression of phosphorylated phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), and PI3K inhibitor accelerated auranofin- and spermidine-induced apoptosis. Using ROS scavenger and PI3K inhibitor, we revealed that ROS acts upstream of auranofin- and spermidine-induced apoptosis. Collectively, our study suggests that combination treatment with auranofin and spermidine could afford synergistic anticancer activity via ROS overproduction and reduced PI3K/Akt signaling pathway.

TNFα-induced Down-Regulation of Estrogen Receptor α in MCF-7 Breast Cancer Cells

  • Lee, Sang-Han;Nam, Hae-Seon
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.285-290
    • /
    • 2008
  • Estrogen-induced proliferation in estrogen receptor (ER)-positive breast cancer cells is primarily mediated through two distinct intracellular receptors, $ER{\alpha}$ and $ER{\beta}$. Although tumor necrosis factor alpha ($TNF{\alpha}$) and $E2/ER{\alpha}$ are known to exert opposing effects on cell proliferation in MCF-7 cells, the mechanism by which $TNF{\alpha}$ antagonizes $E2/ER{\alpha}$-mediated cell proliferation is not well understood. The present study suggests that reduced cell survival in response to $TNF{\alpha}$ treatment in MCF-7 cells may be associated with the down-regulation of $ER{\alpha}$ protein. The decrease in $ER{\alpha}$ protein level was accompanied by an inhibition of $ER{\alpha}$ gene transcription. Cell viability was decreased synergistically by the combined treatment with $ER{\alpha}$-siRNA and $TNF{\alpha}$. Furthermore, pretreatment of cells with the PI3-kinase (PI3K)/ Akt inhibitor, LY294002, markedly enhanced $TNF{\alpha}$-induced down-regulation of the $ER{\alpha}$ protein, suggesting that the PI3K/Akt pathway might be involved in control of the $ER{\alpha}$ level. Moreover, down-regulation of $ER{\alpha}$ by $TNF{\alpha}$ was not inhibited in cells that were pretreated with the proteasome inhibitors, MG132 and MG152, which suggests that proteasome-dependent proteolysis does not significantly influence $TNF{\alpha}$-induced down-regulation of $ER{\alpha}$ protein. In contrast, the effect of the PI3K/Akt inhibitor on $ER{\alpha}$ was blocked in cells that were treated with LY294002 in the presence of the proteasome inhibitors. Collectively, our findings show that the $TNF{\alpha}$ may partly regulate the growth of MCF-7 breast cancer cells through the down-regulation of $ER{\alpha}$ expression, which is primarily mediated by a PI3K/Akt signaling.

Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway

  • Yaling Li;Zhixiong Wu;Jiangping Hu;Gongli Liu;Hongming Hu;Fan Ouyang;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.345-356
    • /
    • 2023
  • This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 µmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 µM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 µmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.

Phosphatidylinositol 3-Kinase Regulates Nuclear Translocation of NF-E2-Related Factor 2 through Actin Rearrangement in Response to Oxidative Stress

  • Kang, Keon-Wook;Lee, Seung-Jin;Park, Jeong-Weon;Kim, Sang-Geon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.241.3-242
    • /
    • 2002
  • Expression of phase II detoxifying genes is regulated by NF-E2-related factor 2 (Nrf2)-mediated antioxidant response element (ARE) activation. Phosphatidylinositol 3-kinase (PI3-kinase) plays an essential role in ARE-mediated rGSTA2 induction by oxidative stress and controls microfilaments and translocation of actin-associated proteins. This study was designed to investigate the P13-kinase-mediated nuclear translocation of Nrf2 and the interaction of Nrf2 with actin. (omitted)

  • PDF

(-) 3,5-Dicaffeoyl-muco-quinic acid isolated from Aster scaber contributes to the differentiation of PC12 cells: through tyrosine kinase cascade signaling

  • Hur, Jin-Young;Lee, Pyeong-Jae;Kim, Ho-Cheol;Kang, In-Sug;Lee, Kang-Lo;Kim, Sun-Yeou
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.79.1-79.1
    • /
    • 2003
  • Aster scaber T. (Asteraceae) has been used in traditional Korean and Chinese medicine to treat bruises, snakebites, headaches and dizziness. (-) 3,5-Dicaffeoyl-muco-quinic acid (DQ) isolated from Aster scaber induced neurite outgrowth in PC12 cells. It has been reported that the activation of the extracellular signal regulated kinase1/2 (Erk 1/2) and phosphoinositide 3 (P13) kinase plays a crucial role in the NGF-induced differentiation of PC12 cells. This study showed that the effect of DQ on neurite outgrowth is mediated via the Erk 1/2 and PI3 kinase-dependent pathways like NGF. (omitted)

  • PDF

홍삼수용성추출물이 혈관신생에 미치는 영향 (Angiogenic Effects of Korea Red Ginseng Water Extract in the In Vitro and In Vivo Models)

  • 노의준;유승훈;김규민;이상현;윤용갑
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.416-425
    • /
    • 2009
  • Angiogenesis is important for promoting cardiovascular disease, wound healing, and tissue regeneration. We here investigated the pharmacological effects of Korea red ginseng water extract (KRGE) on angiogenesis and its underlying signal mechanism. This study showed that KRGE increased in vitro proliferation, migration, and tube formation of human umbilical endothelial cells, as well as stimulated in vivo angiogenesis. KRGE-induced angiogenesis was accompanied by phosphorylation of ERK1/2, Akt, and endothelial nitric oxide synthase (eNOS) as well as an increase in NO production. Inhibition of PI3K activity by wortmannin completely inhibited KRGE-induced angiogenesis and phosphorylation of Akt, ERK1/2, and eNOS, indicating that PI3K/Akt activation is an upstream event of KRGE-mediated angiogenic pathway. The MEK inhibitor PD98059 completely blocked KRGE-induced angiogenesis and ERK phosphorylation without affecting Akt and eNOS activation. However, the eNOS inhibitor NMA effectively inhibited tube formation, but partially blocked proliferation and migration as well as ERK phosphorylation without altering Akt and eNOS activation, revealing that eNOS/NO pathway is in part involved in ERK1/2 activation. This study first demonstrated the critical involvement of both ERK1/2 and eNOS activation in KRGE-induced angiogenesis, which lie on downstream of PI3K/Akt. Thus, these results indicate that KRGE requires activation of both the PI3K/Akt-dependent ERK1/2 and eNOS signal pathways and their cross-talk for its full angiogenic activity.

Combination Therapy with a PI3K/mTOR Dual Inhibitor and Chloroquine Enhances Synergistic Apoptotic Cell Death in Epstein-Barr Virus-Infected Gastric Cancer Cells

  • Kim, Mi-Young;Kruger, Annie J.;Jeong, Ju-Yeon;Kim, Jaehee;Shin, Phil kyung;Kim, Sun Young;Cho, Joo Young;Hahm, Ki Baik;Hong, Sung Pyo
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.448-459
    • /
    • 2019
  • The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway is a promising target for gastric cancer (GC) treatment; however the efficacy of PI3K/mTOR dual inhibitors in GC has not yet been maximized. Additionally, the effect of autophagy regulation by PI3K/mTOR dual inhibitors has not been clearly elucidated in GC treatment. We aimed to show that our newly developed PI3K/mTOR dual inhibitor, CMG002, when combined with an autophagy inhibitor, chloroquine (CQ), potently induces effective cancer cell death in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) cells, where both the PI3K/AKT/mTOR and autophagy pathways play important roles in disease pathogenesis. EBV- and mock-infected AGS and NUGC3 GC cell lines were treated with CMG002 +/- CQ. PI3K/AKT/mTOR signaling pathway mediators, cellular apoptosis and autophagy markers were confirmed by Western blot assay. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. CMG002 effectively blocked the PI3K/AKT/mTOR pathway by markedly decreasing phosphorylation of AKT and its downstream mediator S6. CMG002 induced G0/G1 cell cycle arrest and enhanced apoptotic cell death in AGS and NUGC3 cells, particularly EBV-infected cells compared with mock-infected cells, as confirmed by flow cytometric analyses and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays. The combination of CMG002 plus CQ synergistically increased apoptotic cell death in EBV-infected GC cell lines when compared with CMG002 alone (P < 0.05). Our results suggest that the new PI3K/mTOR dual inhibitor, CMG002, when used in combination with the autophagy inhibitor, CQ, provides enhanced therapeutic efficacy against EBVaGC.

청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과 (Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권3호
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.