• Title/Summary/Keyword: PI observers

Search Result 11, Processing Time 0.035 seconds

Fault diagnosis using multiple PI observers

  • Kim, Hwan-Seong;Ki, Sang-Bong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.287-290
    • /
    • 1996
  • Fault diagnosis problem is currently the subject of extensive research and numerous survey paper can be found. Although several works are studied on the fault detection and isolation observers and the residual generators, those are concerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation is strongly required for practical applications. In this paper, a, strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Fault Detection and Isolation of System Using Multiple Pi Observers (비례적분(PI) 관측기를 이용한 시스템의 고장진단)

  • Kim, H.S.;Kim, S.B.;Shigeyasu Kawaji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 1997
  • Fault diagnosis problem is currently a subject of extensive research in the control field. Although there are several works on the fault detection and isolation observers and the residual generators, those are con- cerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation for the actuator and sensor failures is strongly required in the field of the practical applications. In this paper, a strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Design of Complex Fault Detection and Isolation for Sensor and Actuator by Using Unknown Input PI Observer (미지 입력 PI 관측기를 이용한 센서 및 구동기의 복합 고장진단)

  • 김환성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.437-441
    • /
    • 1999
  • In this paper, a fault diagnosis method using unknown-input proportional integral (PI) observers including the magnitude of actuator failures is proposed. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between the actual output and the estimated output using an unknown-input PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple unknown-input PI observers perfectly.

  • PDF

Design of PI Observers for Unknown Actuator Faults Estimation (구동기의 미지고장추정을 위한 PI관측기 설계)

  • Ahn, Pius;Kim, J.B.;Lee, M.K.
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.54-59
    • /
    • 2007
  • This paper deals with the estimation of unknown actuator faults for linear dynamic systems with sensor noise. The presented method based on the PI(proportional-integral) observer permits to achieve good convergence and exact estimation of unknown faults. The validity of proposed method is established with simulation results and comparisons to the existing methods.

Robust Time Delay Compensation for DTC-Based Induction Machine Systems via Extended State Observers

  • Wang, Fengxiang;Wang, Junxiao;Yu, Li
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.736-745
    • /
    • 2018
  • This paper presents an extended state observer (ESO) based direct torque control (DTC) for use in induction motor systems to handle the issues of time delays, load torque disturbances and parameter uncertainties. Direct torque control offers an excellent torque response and it does not require a proportion integration (PI) controller in the current loop. However, a PI controller is still adopted in the outer speed loop to generate the torque reference value, which is a slow method. An ESO based compound control scheme is proposed to improve the response rate and accuracy of the torque reference signal, especially when load torque is injected. In addition, the time delay problem is analyzed and compensated for in this paper to reduce torque ripples. The proposed disturbance compensation technique based direct control scheme is shown to have good performance both in the transient and stable states via simulations and experimental results.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Design of Adaptive Controller to Compensate Dynamic Friction for a Benchmark Robot (벤치마크 로봇의 동적 마찰 보상을 위한 적응 제어기 설계)

  • Kim, In-Hyuk;Cho, Kyoung-Hoon;Son, Young Ik;Kim, Pil-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.202-208
    • /
    • 2014
  • Friction force on robot systems is highly nonlinear and especially disturbs precise control of the robots at low speed. This paper deals with the dynamic friction compensation problem of a well-known one-link benchmark robot system. We consider the LuGre model because the model can successfully represent dynamic characteristics and various effects of friction phenomenon. The proposed controller is constructed as two parts. An adaptive controller based on dual observers is used to estimate and compensate the dynamic friction. In order to attenuate the friction estimation error and other disturbances, PI observer is additionally designed. Through the computer simulations with the benchmark system, this paper first examines the effects of nonlinear dynamic friction on the control performance of the benchmark robot system. Next, it is shown that the control performance against the dynamic friction is improved by using the proposed controller.

Design of a Robust Position Tracking Controller for Flexible Joint Manipulator Using Motor Angle (모터 각도를 이용한 유연 관절 머니퓰레이터의 강인한 위치 추종 제어기 설계)

  • Lee, Sang-Myung;Kim, In-Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1245-1247
    • /
    • 2014
  • This paper presents a robust position tracking controller for motor-driven flexible joint manipulators using only the motor angle measurement. The control problem is not easy because the link position is hard to estimate in the presence of parameter uncertainties. The proposed controller consists of a feedback linearization controller (FLC) and two proportional-integral observers (PIOs) that estimate both system states including the link position and an equivalent disturbance for compensating the parameter uncertainties. Comparative computer simulations are conducted to demonstrate the effectiveness of the proposed control algorithm.

Indirect Vector Control of Induction Motor using Nonlinear Observer (비선형 관측기에 의한 유도전동기 간접 벡터제어)

  • 정삼용;이진섭;서진연;김동휘;최연옥;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.366-370
    • /
    • 1998
  • Indirect vector control for induction motors requires the use of observers for estimation or observation of rotor flux magnitude and position. In this paper, authors discribe the induction motor vector control and introduce a nonlinear observer, named ELO(extended Luenberger Observer), without simulation results as a preliminary work for trial application. Normally, design of nonlinear observer need coordinate transfromation and linearization through solving the partial different equation. However, ELO requires minimal solution of nonlinear partial differential equation. Simulation was performed by under the enviroment of Matlab and Simulink without the proposed observer because we are still working. Simulation was performed with conventional flux observer, a dc-ac inverter by SVPWM technique, a vector controller armed with multiple PI controllers

  • PDF

A Novel Space Vector modulation Scheme and Direct Torque Control for Four-switch BLDCM Using Flux Observer

  • Pan, Lei;Wang, Beibei;Su, Gang;Cheng, Baohua;Peng, Guili
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.251-260
    • /
    • 2015
  • The main purpose of this paper is to describe a DTC (direct torque control) method for four-switch brushless dc motor (BLDCM) drive. In the method, a novel voltage space vector modulation scheme, an optimal switching table, and a flux observation method are proposed. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern, and an optimal switching table is proposed to improve the torque distortion caused by midpoint current of the split capacitors. Unlike conventional flux observers, this observer does not require speed adaptation and is not susceptible to speed estimation errors, especially, at low speed. Global asymptotic stability of the flux observer is guaranteed by the Lyapunov stability analysis. DC-offset effects are mitigated by introducing a PI component in the observer gains. This method alleviates the undesired current and torque distortion which is caused by uncontrollable phase. The correctness and feasibility of the method are proved by simulation and experimental results.