• 제목/요약/키워드: PI Speed controller

검색결과 445건 처리시간 0.026초

직류 전동기 속도 제어에서 PI 제어기보다 우수한 퍼지 논리 제어기의 이득 선정을 위한 연구 (A Study on the Gain Tuning of Fuzzy Logic Controller Superior to PI Controller in DC Motor Speed Control)

  • 김영렬
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.30-39
    • /
    • 2014
  • Through a lot of papers, it has been concluded that fuzzy logic controller is superior to PI controller in motor speed control. Although fuzzy logic controller is superior to PI controller in motor speed control, the gain tuning of fuzzy logic controller is more complicated than that of PI controller. In this paper, using mathematical analysis of the PI and fuzzy controller, the design method of the fuzzy controller that has the same characteristics with the PI controller is proposed. After that, we can design the fuzzy controller that has superior performance than PI controller by changing the envelope of input of fuzzy controller to nonlinear, because the fuzzy controller has more degree of freedom to select the control gain than PI controller. The advantage of fuzzy logic controller is shown through mathematical analysis, and the simulation result using Matlab simulink has been proposed to show the effectiveness of these analysis.

A study on the speed control of induction motor using Neural Network

  • Han, Young-Jae;Park, Hyun-Jun;Kim, Gil-Dong;Jang, Dong-Uk;Lee, Su-Gil;Jo, Jung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.128.3-128
    • /
    • 2001
  • In this paper we proposed that the speed of induction motor is controlled by a PI controller, which could control unknown motor using Neural Network for auto-tuning of the PI parameter. The parameters of the PI controller were adjusted to reduce the speed error of the controlled motor. The input parameters of the Neural Network controller are the speed, q-axis current, and speed reference of the induction motor respectively. The usefulness of proposed controller will be confirmed by simulation which we compare with conventional PI controller.

  • PDF

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

퍼지 PI 제어기를 이용한 유도전동기 속도제어 (Speed control of induction motor using Fuzzy PI controller)

  • 조정민;함년근;이상집;이승환;이훈구;김용주;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.230-233
    • /
    • 1998
  • The conventional PI controller are fragile in parameter variation and load-variation. Therefore, in this paper, a speed control algorithm based on the Fuzzy PI controller is proposed for the high performance speed control of a voltage-source inverter to drive 3-phase induction motors. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state and steady-state response.

  • PDF

Fuzzy Logic Control를 이용한 BLDC 모터의 전압 제어 속도 제어기 (Voltage Controlled Speed Controller of BLDC Motor Using Fuzzy Logic Control)

  • 박준호;한상수
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.481-486
    • /
    • 2018
  • DC 모터는 브러시 구조가 있는 DC 모터와 브러시 구조가 없는 BLDC(Brushless DC) 모터로 분류된다. BLDC 모터는 DC 모터의 브러시가 없이 정류를 전자적으로 수행하는 모터로 BLDC 모터의 속도제어를 대표하는 것은 PI 제어이다. PI 제어기를 이용한 속도제어는 정상상태에 도달하는 응답 특성이 느리다는 단점을 가지고 있다. 이를 보완하기 위해 정상 상태까지 도달하는 시간이 짧고 비선형 제어에도 쉽게 제어가 가능한 FLC(Fuzzy Logic Controller)를 이용해 전압을 가감하는 방식의 전압 제어 속도 제어기 제안하였다. 제시한 퍼지 속도 제어기의 타당성과 유용성은 MATLAB 프로그램의 Simulink를 통해 모의실험으로 입증하였다. 모의실험은 기준 속도를 500rpm, 800rpm, 1500rpm의 3가지 경우로 각각 PI 제어기와 제안한 퍼지 속도 제어기를 실험하였다. 실험 결과 제안한 퍼지 속도 제어기가 30% 정도 개선된 정상 상태 속도 응답 특성을 보이며 PI 제어기에 비해서 빠른 속도 응답 특성을 갖고 있음을 입증하였다.

FAM 제어기를 이용한 IPMSM 드라이브의 하이브리드 PI 제어기 (Hybrid PI Controller of IPMSM Drive using FAM Controller)

  • 고재섭;최정식;정동화
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.192-197
    • /
    • 2007
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Hybrid-PI 제어기를 이용한 유도전동기의 고성능 제어 (High performance Control of Induction Motor using Hybrid-PI Controller)

  • 최정식;고재섭;김길봉;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.260-262
    • /
    • 2006
  • This paper presents Hybrid-PI controller of induction motor drive using fuzzy control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid-PI controller proposes a new method based self tuning PI controller. Hybrid-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

부하관성모멘트 변화를 보상한 유도전동기의 퍼지 PI 속도제어 (Fuzzy PI Speed Controller of Induction Motor Compensation the Variation of Load Inertia)

  • Cho, Soon-Bong;Hyun, Dong-Seok
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.233-243
    • /
    • 1994
  • Generally, fuzzy PI controller that regulates the gains using fuzzy algorithm shows high performance in speed response. However, it has some problems to the load inertia variation, because the change of speed error(CE) is in a fixed range. As load inertia increases, CE is decreased and the usuage of fuzzy table is limited. Therefore, the output of the fuzzy controller has a limited range. This paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper CE range with respect to the load inertia variation. The proposed controller is applied to the vector controlled system with 2.2kW induction motor. Some simulation and experimental results are exhibited. With these results, we can easily find that proposed PI controller is more robust than the conventional fuzzy PI controller against the load inertia variation.

PI속도제어기에서의 새로운 적분누적 방지기법 (New Anti-windup Strategy for PI-type Speed Controller)

  • 최종우;이상철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.629-637
    • /
    • 2005
  • This paper proposes a new anti-windup strategy to suppress integrator windup for PI speed controller and to be implemented on the existing system with minimal modification. When the speed control mode is changed from P controller to PI controller. an appropriate initial value for integrator is assigned. This value restricts overshoot and high settling time. Also, the proposed method guarantees the designed performance independent on operating conditions, i.e. different set-point change and load torque. Simulation and experimental results for PMSM speed controller have shown its superior performance compared with the conditional integration and tracking back calculation.

퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF