• Title/Summary/Keyword: PHYSICO-CHEMICAL FACTORS

Search Result 160, Processing Time 0.021 seconds

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration

  • Kim, Min-Suk;Kim, Yong-Suk;Min, Hyun-Gi;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to identify characteristics of domestic pine forest soils and to elucidate major soil influencing factors for natural regeneration. We analyzed the physico-chemical characteristics of the soil samples collected from 23 pine forests and confirmed the similar results with the forest soil characteristics. Soil pH, organic matter content, total nitrogen, exchangeable Ca, silt content, and exchangeable Al were selected as the major soil factors among the exposed soils through 10 days of pine seedlings exposure and cultivation experiments and statistical analysis. Multiple regression analysis showed that soil pH had a positive effect on specific root length (SRL) of red pine seedlings and exchangeable Al was a significant factor affecting negative change in SRL. Taken together, the reduction of exchangeable Al by soil pH adjustment would be helpful for natural regeneration by restoring the forest and improving the fine root and root integrity of pine seedlings. Therefore, soil pH and exchangeable Al could be recommended as a major soil factor to be carefully considered in the monitoring and management of soil in pine forests that need to be renewed in the future.

Effect of Some Factors on the Production of an Antifungal Compound KRF-001 from Bacillus subtilis subsp. krictiensis (Bacillus subtilis subsp. krictiensis로부터 항진균물질 KRF-001의 생산을 위한 발효조건 및 돌연변이 연구)

  • 손광희;권혜경;복성해;이항우
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.614-618
    • /
    • 1991
  • Antifungal compound, KRF-001, was produced by Bacillus subtilis subsp. krictiensis isolated from soil. Physico-chemical factors affecting cell growth and bioactivity were examined to improve the production yield. Nutrient composition, temperature, pH and phosphate ion concentration were proved to be important factors for the production of KRF-001. Mutation was performed to select high yielding strains. First, mutation was performed with ultra-violet light, and the second mutation process was conducted by MNNG (N-Methyl-N'-nitro-N-nitrosoguanidine) resulting in three high yielding strains.

  • PDF

Arthropod Tissue Culture and Virus Research (곤충조직배양과 바이러스 연구)

  • 이연대
    • Korean Journal of Microbiology
    • /
    • v.11 no.3
    • /
    • pp.134-151
    • /
    • 1973
  • The physico-chemical and biological factors of coastal sea water were measured bimonthly from 1976 to 1979 for elucidating the relationship between microbial distribution and environmental factors at Masan and Jinhae bay. The experimental results are summarized as followings : 1) The polulation size of bactriz in sea water were increasing as the water temperature increased, and that was higher at station 2 and 3 than at station 1. The number of fungi showed the highest value on July on bottom. The population size of yeast showed no seasonal variation and also showed a relation with the geographic distance. 2) The correlationship between microbial distribution and environmental factors showed little coefficiency in surface water. And the other hand, at bottom water, between general bacteria and water temperature and dissolved oxygen, and between yeast and salinity, there were relatively high coefficiecy.

  • PDF

Ginseng Growths In Abolished Ginseng Fields and Factors Affecting the Ginseng Growth (폐포지 인삼 생육과 인삼 생육에 미치는 요인)

  • 김영호;이장호
    • Journal of Ginseng Research
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 1993
  • In 61 abolished ginseng fields examined in 1986, the average plant missing was 49.2%, root rusting, 34.4%, and root rot, 3.3%. Plant missing was not different among the ages of ginseng fields; however, rate of root rusting was high in 3- and 4-year-old ginseng fields, and rate of root rot was high in 5- and 6-year-old ginseng fields, suggesting that root rusting and root rot were relatively more important factors related to the abolishment of ginseng filed in younger and older ginseng fields in 1986, respectively. Out of 61 ginseng fields, 18 were infested with more than 509) alternaria blights, and out of 19 fields with root rot, 2 were caused by Sclerotinia sp., 5 by potato rot nematode, and the causal agents were not identified in 12 fields. With increase of the ridge height, root rusting was significantly decreased, and plant missing rate was significantly lower in fields with straw mulching than those without mulching. The physico-chemical characteristics of the fields with more than 50fi root rusting, the contents of $NO_3,\;P_2O_5$ and Ca were higher than those of good fields with less than 40% root rusting and plant missing. The population of Erwinia sp. was significantly corralled with plant missing.

  • PDF

Physico-Chemical Factors on the Growth of Cochlodinium polykrikoides and Nutrient Utilization (Cochlodinium polykrikoides의 성장에 미치는 물리$\cdot$화학적 요인과 영양염 이용)

  • KIM Hyung Chul;LEE Chang Ku;LEE Sam Geun;KIM Hak Gyoon;PARK Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.445-456
    • /
    • 2001
  • In the 1990s, Cochlodinium polykikoides red tide has been annually occurred in the southern coast of Korea and caused the mass damage to the fisheries with a huge amount of economic loss. The present study was done to establish the biological foundation for the elucidation of the mechanism of C. polykikoiaes red tide. The growth response of C. polykikoides to physico-chemical factors such as temperature, salinity, pH, and light intensity were examined using axenic cultures to evaluate the relative importance of these factors on the dynamics of natural populations, It was found that the highest growth conditions were $25^{\circ}C,\;40\%_{\circ}$, pH 7.5, and 7,500 lux, respectively. The tolerable salinity range of growth was relatively wide at an optimum temperature and was reduced to a much narrower range at a sub-optimum temperature. These findings indicate that C. polykikoides is an eurythermal and euryhaline organism. The organism demanded higher light intensity and oceanic pH narrow in its growth. C. polykikoides utilize inorganic nutrients, such as nitrate and ammonium as N, and phosphate as P. The nutritional requirements of C. polykikoides were $40{\mu}M$ for nitrate, $50{\mu}M$ for ammonium, and $5{\mu}M$ for phosphate. The half saturation constant (Ks) for growth was $2.10{\mu}M$ for nitrate, $1.03{\mu}M$ for ammonium, and $0.57{\mu}M$ for phosphate. These values were comparatively smaller than those of other dinoflagellates reported previously. We confirmed that the organism is characterized as an eutrophic species. However, ammonium Ks value is smaller than that of other eutrophic species, This result indicates that C. polykikoides red tide may outbreak in the waters which eutrophication is in progress rather than eutrophicated waters. C. polykikoides preferred ammonium better than nitrate as a nitrogen source when in a growth stage, Therefore, our results indicate that ammonium is more important nutrient on the growth of the organism in comparison with other inorganic nutrients and C. polykikoides red tide is related with the increased ammonium concentration in the coastal waters.

  • PDF

A Study on the Effect of Physico- Chemical Factors in Wear Mechanism in a Lubricated Concentrated Contact (I) (윤활시스템에서 마모메카니즘에 미치는 물리화학적 영향에 관한 연구(I))

  • 최웅수;권오관;문탁진;유영홍
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.36-42
    • /
    • 1988
  • On the basis of the thermally-activated Wear theory, it is well estabilished that the secondary activated energy, which is mainly resulted from the exothermic reaction of hydrogen from thermal decomposition of the hydrocarbons at the high temperature and the high speed, caused catastropic failure. The new additive, viz., DEP was synthesized to reduce or eliminate the hydrogen effect at the contact junction. Through the thermal degrading and the thermodynamic consideration, the synthesized additive, viz., DEP showed the possibiliy as the hydrogen scavenger.

HCA AND TWC HYBRID SYSTEM FOR REDUCING COLD-START EMISSION

  • Lee, S.C.;Jang, J.H.;Lee, B.Y.;Bae, J.H.;Choung, S.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • In line with the Super Ultra Low Emission Vehicle (SULEV) regulation, the main idea in this study has been focused on the utilization of hydrocarbon adsorber (HCA) to adsorb the excess hydrocarbons emitted during a period of engine cold-start, As main recipes of HCA materials, many types of zeolite as well as the combination of alumina and precious metals were used, Representative physico-chemical factors of zeolite such as acidic and hydrophobic properties were characterized. The optimum recipe of HCA materials was also determined. Among the acid properties of zeolites, the Si/Al ratio was found to be the most important factor to get higher hydrocarbon adsorption capacity.

The Influence of Environmental Conditions on the Production of Pigment by Serratia marcescens

  • Hardjito, Linawati;Huq, Anwar;Colwell, Rita R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.100-104
    • /
    • 2002
  • Serratia marcescens biovar A2/A6, isolated from an Indonesian freshwater source, was identified based on extensive morphological, biochemical and genetic characterization. Formation of pigment was found to be strongly influenced by environmental conditions. Placket-Burman design was used to analyze the effect of carbon and nitrogen sources. Based on results of physiological and biochemical studies, the optimum conditions for growth and pigment formation were incubation 30$^{\circ}C$ in a neutral to slightly alkaline medium containing lactic acid and beef extract.

Effect of Humidity on Physico-chemical Properties of Hydrous Aluminum Oxide

  • Rhee, Gye-Ju;Han, Kwan-Sub
    • YAKHAK HOEJI
    • /
    • v.21 no.2
    • /
    • pp.101-109
    • /
    • 1977
  • The effect of humidity on the aging process of hydrous aluminum oxide prepared by the reaction of aluminum chloride and sodium bicarbonate solution at pH 7.8, which was then kept in various atmosphere under relative humidity at 37.deg. was observed by the measurements of acid consuming capacity, X-ray diffraction and IR absorption. The humidity was one of the important factors influencing the aging process of hydrous aluminum oxide during storage. The higer the humidity, the more was accelerated age, crystalize and loss in acid reactivity. Depending on the humidity, the aging product was different, especially, in the case of up to the relative humidity of 72%, it forming bayerite. On the other hand, the hydrous aluminum oxide aged below the relative humidity of 50% was still amorphous even after 120 days storage. When hydrous aluminum oxide was aged under higher humidity, definite IR absorption bands develop as the hydroxys become part of an ordered structure, and it showed their characteristic absorption band around 1630 and 1060 cm$^{-1}$.

  • PDF