• Title/Summary/Keyword: PHENOLOGY

Search Result 222, Processing Time 0.029 seconds

Risk of High Temperatures on Rice Production in China: Observation, Simulation and Prediction

  • Tao, Fulu;Shi, Wenjiao
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.44-48
    • /
    • 2016
  • Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations.

  • PDF

Predicting Harvest Maturity of the 'Fuji' Apple using a Beta Distribution Phenology Model based on Temperature (온도기반의 Beta Distribution Model 을 이용한 후지 사과의 성숙기 예측)

  • Choi, In-Tae;Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1247-1253
    • /
    • 2017
  • The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.

수 종 목본식물의 화력학적 연구

  • 민병미;최재규
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.477-487
    • /
    • 1993
  • To investigate phenological differences among species, and relationship between phenology and air temperatures, we surveyed foliation and flowering times of several woody plants in two temperate forests, Namhansansung and Taegwallyong area, for three years, 1991, 1992 and 1993. In Namhansansung area, the leaves of Quercus mor~golica, Rhododendron mucronulatum, Prunus levezlleana and Symplocos chinensis for. pilosa expanded in the early season(about 10 April), and those of Quercus variabilis, Quercus dentata and Maackia amurensis in the late season(about 5 May). The foliation time of the earliest species(Rhododendron mucronulatum) was 27 days earlier than thzt of the latest(Maackia amurensis, Quercus variabilis and Quercus dentata). In Taegwallyong area, the leaves of Staphylea bumalda and Rhamnus yoshinoi foliated on 25 April and those of Rhus verniciflua and Fraxinus rhynchophylla on 25 May. The annual mean air temperature of Narnhansansung area was $5.5^{\circ}C$ higher than that of Taegwallyong area. Foliation times of the same species were earlier in the former: the differences between two areas were 8~24 day among species. In contrast, flowering times of the same species were 0~22 days earlier in the former. It is concluded that the budding time of leaves was related to year day index(YDI), and foliation time of leaves was related to Nuttonson's index(Tn).

  • PDF

Detection of the ecotone Mt.Pukhansan National Park with GIS and remote sensing technologies (GIS 및 원격탐사기법을 이용한 북한산 국립공원 주변부의 추이대 탐지)

  • 박종화;명수정;박영임
    • Spatial Information Research
    • /
    • v.3 no.2
    • /
    • pp.91-102
    • /
    • 1995
  • The purposes of this paper are to find ways to detect ecotone between two eco'||'&'||'not;systems, measure the width and size of ecotone around the Mt. Pukhansan National Park, and investigate environmental impacts, if any, on the forest ecosystem of the park by human activities. Normalized Difference Vegetation Index(NDVI) derived from TM data and the ana'||'&'||'not;lytical capabilities of GIS are used to investigate characteristics of the ecotone, or the impact zone, of the park. Major findings of the study can be summarized as follows: First, it was found that ecotone of the park could be identified from NDVI -distance curves deri"ed by a series of buffering op'||'&'||'not;erations. Second, NDVIs of all three years of the national park are about 14 percent higher than surrounding areas. Third, width of ecotone were found to be closely related to phenology, adjacent land use, environmental degradation, etc. Third, ecotone of the study area was nearly douvled during 1985-1993 period, which might be caused by heavy trampling of visitors. Thus it can be concluded that further studies are needed to find exact causes of the deterioration of plant communities of the ecotone of the park.

  • PDF

Predicting Harvest Maturity of the 'Fuji' Apple at the Gunwi Province of the South Korea using DTS Phenology Model (DTS (Days Transformed to Standard temperature) 생육 모델을 활용한 군위 지역의 '후지' 사과 성숙기 예측)

  • Choi, In-Tae;Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo;Yun, Kyung-Dahm;Kim, Soo-Hyung
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1547-1550
    • /
    • 2015
  • Fuji apple variety introduced in Japan has excellent storage quality and good taste so it is most commonly cultivated in the Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm, such as working time, fruit storage, market shipment and labor distribution so it is very important. This study was carried out to predict the harvest maturity of 'Fuji' apple using DTS (Days Transformed to Standard temperature) model based on the Arrhenius law in the Gunwi province of the South Korea. Input data are daily average temperature and apple harvest maturity. Predicted the harvest maturity of Fuji apple after estimating the optimal parameters by using the Nelder-Mead method. The differences of observed and predicted harvest maturity day are approximately 1 to 4 days and the RMSE is 2.9.

Temperature-dependent development models and phenology of Hydrochara affinis (잔물땡땡이의 온도발육모형과 생물계절)

  • Yoon, Sung-Soo;Kim, Myung-Hyun;Eo, Jinu;Song, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.222-230
    • /
    • 2020
  • Temperature-dependent development models for Hydrochara affinis were built to estimate the ecological parameters as fundamental research for monitoring the impact of climate change on rice paddy ecosystems in South Korea. The models predicted the number of lifecycles of H. affinis using the daily mean temperature data collected from four regions (Cheorwon, Dangjin, Buan, Haenam) in different latitudes. The developmental rate of each life stage linearly increased as the temperature rose from 18℃ to 30℃. The goodness-of-fit did not significantly differ between the models of each life stage. Unlike the optimal temperature, the estimated thermal limits of development were considerably different among the models. The number of generations of H. affinis was predicted to be 3.6 in a high-latitude region (Cheorwon), while the models predicted this species to have 4.3 generations in other regions. The results of this study can be useful to provide essential information for estimating climate change effects on lifecycle variations of H. affinis and studies on biodiversity conservation in rice fields.

Ecological Responses of Plants to Climate Change: Research Trends and Its Applicability in Korea (기후변화에 대한 식물의 생태적 반응: 연구동향과 한국에서의 적용가능성)

  • Kang, Hyesoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.319-331
    • /
    • 2013
  • Recent climate change, which is mostly ascribed to anthropogenic activities, is believed to be a major factor leading to biodiversity decreases and ecosystem service deteriorations. I have reviewed recent studies on climate change effects for many ecological processes involved with plants, in order to improve our understanding of the nature of ecological complexity. Plants in general have better growth and productivity under high levels of $CO_2$, although the long term effects of such $CO_2$ fertilizers are still controversial. Over the last 30 years, the Earth has been greening, particularly at higher latitudes of the Northern Hemisphere, perhaps due to a relaxation of climatic constraints. Human appropriation of net primary productivity (NPP), which corresponds up to 1/3 of global NPP, is ultimately responsible for climate change and biodiversity decreases. Climate change causes phenological variations in plants, especially in regards to spring flowering and fall leaf coloring. Many plants migrate polewards and towards higher altitudes to seek more appropriate climates. On the other hand, tree mortality and population declines have recently been reported in many continents. Landscape disturbance not only hinders the plant migration, but also makes it difficult to predict the plants' potential habitats. Plant and animal population declines, as well as local extinctions, are largely due to the disruption of species interactions through temporal mismatching. Temperature and $CO_2$ increase rates in Korea are higher than global means. The degree of landscape disturbances is also relatively high. Furthermore, long-term data on individual species responses and species interactions are lacking or quite limited in Korea. This review emphasizes the complex nature of species responses to climate change at both global and local scales. In order to keep pace with the direction and speed of climate change, it is urgently necessary to observe and analyze the patterns of phenology, migration, and trophic interactions of plants and animals in Korea's landscape.