• Title/Summary/Keyword: PFC(Power Factor Correction

Search Result 315, Processing Time 0.027 seconds

A Study on Novel Step-Up AC-DC Chopper of High Efficiency by using Lossless Snubber Capacitor (새로운 무손실 스너버 커패시터를 이용한 고효율 스텝 업 AC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1103-1104
    • /
    • 2008
  • In this paper, authors propose a novel step-up AC-DC chopper operated with power factor correction (PFC) and with high efficiency. The proposed chopper behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed chopper is got to be a discontinuous sinusoid form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC chopper, the switching devices are turned-on with the zero current switching, but turn-off of the switching devices is switched at current maximum value. To achieve a soft switching of the switching turn-off, the proposed chopper is used a new partial resonant circuit. The result is that the switching loss is very low and the efficiency of chopper is high.

  • PDF

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

A New Frequency Controlled Half-bridge Converter with Hold-up Time Extension Circuit

  • Kim, Duk-You;Kim, Jae-Kuk;Lee, Woo-Jin;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.382-384
    • /
    • 2008
  • Hold-up time is a special requirement for the front end DC/DC converter in a server power supply. It forces the converter with the variable switching frequency to operate in a wide switching frequency range, which makes the regulation difficult and reduces the power density. In this paper a novel frequency controlled half bridge converter with the hold-up time extension circuit is proposed. During the hold-up time, the auxiliary switches are turned on, thus the resonant inductance is reduced and the voltage conversion ratio is increased. Therefore, the output capacitor of the power factor correction (PFC) circuit can be decreased, and the converter can have high power density. The proposed converter is verified by experimental results from a prototype with 700W, 400V input, and 12V output.

  • PDF

Single-phase Uninterruptible Power Supply employing Superconducting Magnet Energy Storage Unit

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.362-368
    • /
    • 2007
  • A single-phase uninterruptible power supply system equipped with a superconducting magnet energy storage unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces a number of switching devices by applying a common-arm scheme. Removing some switches or substituting passive elements for active switches can increase the sophistication and reduces degree of freedom in control strategy. However, high-performance DSP controller can execute the complicated control task with no additional cost. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. The validity of the proposed system is verified by experimental results.

A Study on Power Factor Correction Forward Converter for Wind Power Generation (풍력 발전용 포워드 컨버터의 역률 개선에 관한 기초 연구)

  • 장수형;박정환;조성훈;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.107-111
    • /
    • 2001
  • This paper presents a detailed analysis method of the universal input forward converter with LC input filter operating in discontinuous capacitor voltage mode(DCVM) for wind power generation. In this analysis, condition for DCVM operation and conversion ratio for rectified sinusoidal input are made clear. To verify the validity of the analysis, simulation is carried out for the universal input ranging from 90 $V_{rms} to 260 V_{rms}$

  • PDF

A Comparative Study of Simple Ac-Dc PWM Full-Bridge Current-Fed and Voltage-Fed Converters

  • Moschopoulos Gerry;Shah Jayesh
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.246-255
    • /
    • 2004
  • Ac-dc PWM single-stage converters that integrate the PFC and dc-dc conversion functions in a single switching converter have been proposed to try to minimize the cost and complexity associated with implementing two separate and independent switch-mode converters. In this paper, two simple ac-dc single-stage PWM full-bridge converters are considered - one current-fed, the other voltage-fed. The operation of both converters is explained and their properties are noted. Experimental results obtained from simple lab prototypes of both converters are presented, then compared and discussed.

Design and Implementation of a Power Conversion Module for Solid State Transformers using SiC MOSFET Devices (배전용 반도체 변압기 구현을 위한 SiC MOSFET 기반 전력변환회로 단위모듈 설계에 관한 연구)

  • Lim, Jeong-Woo;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2017
  • This paper describes the design and implementation of a unit module for a 10 kVA class 13.2 kV/220 V unidirectional solid-state transformer (SST) with silicon-carbide metal-oxide-semiconductor field-effect transistors. The proposed module consists of an active-front-end (AFE) converter to interface 1320 V AC voltage source to 2500 V DC link and an isolated resonant DC-DC converter for 500 V low-voltage DC output. The design approaches of the AFE and the isolated resonant DC-DC converters are addressed. The control structures of the converters are described as well. The experiments for the converters are performed, and results verify that the proposed unit module can be successfully adopted for the entire SST operation.

The development of high efficiency isolated converter for vehicle charger (차량 충전용 고효율 절연형 컨버터 개발)

  • Park, Minjun;Jin, Hoshang;Lee, Gunhee;Hwang, Kwangkyu;Kim, Woosup;Lee, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.101-102
    • /
    • 2015
  • This paper is about the suggestion for the development in the commercialization for 3.6kW Class On-Board charger. It is suggesting non-insulation AC-DC Boost Power Factor correction circuit and insulation DC-DC resonant Converter for circuit design. In addition, Input AC voltage in the power supply is DCM control which can be designed to decrease the inductance for the inductor size to be reduced. DCM controls and Interleaved PFC can be designed to decrease the inductor size increasing the power conversions. Also, using the insulation DC-DC resonant converter, the efficiency can be increased. This system is verified using prototype hardware.

  • PDF

A Characteristic Analysis of Single-Power-Stage High Frequency Resonant AC-DC Converter with High Power Factor (고역률 단일 전력단 고주파 공진 AC-DC 컨버터의 특성해석)

  • 남승식;원재선;황계호;오경섭;박재욱;김동희;오승훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2004
  • This paper proposes a single-power-stage high frequency resonant AC-DC converter with high power factor using ZVS(Zero Voltage Switching), and integrates a conventional converter with two stage into single stage converter. Input power factor is possible to be improved as a high power factor because inductor for power factor correction(PFC) is connected in input and converter is operated in discontinued current mode(DCM) with constant duty cycle and variable switching frequency. The conventional converter with two stage need to add a switch in order to control a power factor, but single stage converter have a advantage that system is simple and cost is down, confidence is improved, etc. This paper described a operation principle and characteristic analysis for single stage AC-DC converter with high power factor and have evaluated characteristic values by using normalized parameter. We make a experimental equipment using MOSFET as a switching device on the basis of characteristic values obtained from characteristic evaluations and we conform a rightfulness of theoretical analysis by comparing theoretical waveforms and experimental waveforms.

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.