• Title/Summary/Keyword: PET reconstruction

Search Result 80, Processing Time 0.026 seconds

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

A Study on the Ordered Subsets Expectation Maximization Reconstruction Method Using Gibbs Priors for Emission Computed Tomography (Gibbs 선행치를 사용한 배열된부분집합 기대값최대화 방출단층영상 재구성방법에 관한 연구)

  • Im, K. C.;Choi, Y.;Kim, J. H.;Lee, S. J.;Woo, S. K.;Seo, H. K.;Lee, K. H.;Kim, S. E.;Choe, Y. S.;Park, C. C;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.441-448
    • /
    • 2000
  • 방출단층영상 재구성을 위한 최대우도 기대값최대화(maximum likelihood expectation maximization, MLEM) 방법은 영상 획득과정을 통계학적으로 모델링하여 영상을 재구성한다. MLEM은 일반적으로 사용하여 여과후역투사(filtered backprojection)방법에 비해 많은 장점을 가지고 있으나 반복횟수 증가에 따른 발산과 재구성 시간이 오래 걸리는 단점을 가지고 있다. 이 논문에서는 이러한 단점을 보완하기 위해 계산시간을 현저히 단축시킨 배열된부분집합 기대값최대화(ordered subsets expectation maximization. OSEM)에 Gibbs 선행치인 membrance (MM) 또는 thin plate(TP)을 첨가한 OSEM-MAP (maximum a posteriori)을 구현함으로써 알고리즘의 안정성 및 재구성된 영상의 질을 향상시키고자 g나다. 실험에서 알고리즘의 수렴시간을 가속화하기 위해 투사 데이터를 16개의 부분집합으로 분할하여 반복연산을 수행하였으며, 알고리즘의 성능을 비교하기 위해 소프트웨어 모형(원숭이 뇌 자가방사선, 수학적심장흉부)을 사용한 영상재구성 결과를 제곱오차로 비교하였다. 또한 알고리즘의 사용 가능성을 평가하기 위해 물리모형을 사용하여 PET 기기로부터 획득한 실제 투사 데이터를 사용하였다.

  • PDF

A Case of Mandible Osteomyelitis Mimicking Recurrent Tongue Cancer (재발성 설암으로 오인된 하악골 골수염 1예)

  • Park, Sangheon;Jung, Kwangjin;Park, Min Woo;Jung, Kwang-Yoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.29 no.2
    • /
    • pp.65-67
    • /
    • 2013
  • Osteomyelitis is an infection of bone or bone marrow, caused by pyogenic bacteria or mycobacterium. Osteomyelitis can be acute or chronic, inflammatory process of the bone and its structures. Chronic osteomyelitis will result in variable sclerosis and deformity of the affected bone. With an infection of the bone, the subsequent inflammatory response will elevate this overlying periosteum, leading to a loss of the nourishing vasculature, vascular thrombosis, and bone necrosis, resulting occasionally in formation of sequestra. These become areas that are more resistant to systemic antibiotic therapy due to lack of the normal Havesian canals that are blocked by scar tissue. At this aspect, not only systemic antibiotic therapy, but also surgical debridement maybe required to remove the affected bone and prevent disease propagation to adjacent areas. We experienced a patient who diagnosed tongue cancer and underwent wide partial glossectomy few years before, with an ulcerative lesion around right retromolar trigon. We diagnosed cancer recurrence because PET indicated hot uptake on mandible which was nearby previous tongue tumor site. The patient received hemiglossectomy via paramedian mandibulotomy, partial mandibulectomy and fibula osteocutaneous free flap reconstruction. But final diagnosis was mandible osteomyelitis on pathology report. Here, we present the case with a review of the related literatures.

Treatment of an Occipital Fracture by Esquillectomy (골편적출술을 적용한 후두골 골절 치료)

  • Park, Jin-Uk;Cho, Ki-Rae;Chang, Dong-Woo;Choi, Seok-Hwa;Kim, Gon-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.450-452
    • /
    • 2010
  • A 4-year-old male Yorkshire terrier was referred to us with signs of vomiting and unconsciousness due to a blunt head trauma. Gross examinations detected facial edema, subcutaneous hemorrhage and hypersalivation. A survey radiograph located an occipital fragment which was displaced caudally. A three-dimensional computed tomographic reconstruction demonstrated that the ventral portion of the fragment was attached incompletely. Because of the instability of the fragment, it was decided to perform an esquillectomy. After removing the fragment, the defect was reinforced with a muscular flap originating from the splenius muscle. The patient's condition gradually improved except for a slightly ataxic gait. At 20 months follow-up, there was no evidence of ataxia. The neurological status did not deteriorate before starting surgical intervention, although the patient sustained a skull fracture with severe intracranial hemorrhage. It is likely that the fragment being displaced outwardly played an important role in preventing an increase in intracranial pressure which could have led to neurological deterioration.

A Comparative Study of Subset Construction Methods in OSEM Algorithms using Simulated Projection Data of Compton Camera (모사된 컴프턴 카메라 투사데이터의 재구성을 위한 OSEM 알고리즘의 부분집합 구성법 비교 연구)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Mi-No;Lee, Ju-Hahn;Kim, Joong-Hyun;Kim, Chan-Hyeong;Lee, Chun-Sik;Lee, Dong-Soo;Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • Purpose: In this study we propose a block-iterative method for reconstructing Compton scattered data. This study shows that the well-known expectation maximization (EM) approach along with its accelerated version based on the ordered subsets principle can be applied to the problem of image reconstruction for Compton camera. This study also compares several methods of constructing subsets for optimal performance of our algorithms. Materials and Methods: Three reconstruction algorithms were implemented; simple backprojection (SBP), EM, and ordered subset EM (OSEM). For OSEM, the projection data were grouped into subsets in a predefined order. Three different schemes for choosing nonoverlapping subsets were considered; scatter angle-based subsets, detector position-based subsets, and both scatter angle- and detector position-based subsets. EM and OSEM with 16 subsets were performed with 64 and 4 iterations, respectively. The performance of each algorithm was evaluated in terms of computation time and normalized mean-squared error. Results: Both EM and OSEM clearly outperformed SBP in all aspects of accuracy. The OSEM with 16 subsets and 4 iterations, which is equivalent to the standard EM with 64 iterations, was approximately 14 times faster in computation time than the standard EM. In OSEM, all of the three schemes for choosing subsets yielded similar results in computation time as well as normalized mean-squared error. Conclusion: Our results show that the OSEM algorithm, which have proven useful in emission tomography, can also be applied to the problem of image reconstruction for Compton camera. With properly chosen subset construction methods and moderate numbers of subsets, our OSEM algorithm significantly improves the computational efficiency while keeping the original quality of the standard EM reconstruction. The OSEM algorithm with scatter angle- and detector position-based subsets is most available.

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.

The Effects of Discrepancy in Reconstruction Algorithm between Patient Data and Normal Database in AutoQuant Evaluation: Focusing on Half-Time Scan Algorithm in Myocardial SPECT (심근 관류 스펙트에서 Half-Time Scan과 새로운 재구성법이 적용된 정상군 데이터를 기반으로 한 정량적 분석 결과의 차이 비교)

  • Lee, Hyung-Jin;Do, Yong-Ho;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2014
  • Purpose: The new reconstruction algorithms (NRA) provided by vendor aim to shorten the acquisition scan time. Whereas depending on the installed version AutoQuant program used for myocardial SPECT quantitative analysis did not contain the normal data that NRA is applied. Thus, the purpose of this paper is to compare the results according to AutoQuant versions in myocardial SPECT applied NRA and half-time scan (HT). Materials and Methods: Rest Tl and stress MIBI data of total 80 (40 men, 40 women) patients were gathered. Data were applied HT acquisition and ASTONISH (Philips) software which is NRA. Modified autoquant of SNUH and old version of AutoQuant (full-time scan) provided by company were compared. Comparison groups were classified as coronary artery disease (CAD), 24 hrs delay and almost normal patients who have a simple pain patient. Perfusion distribution aspect, summed stress score (SSS), summed rest score (SRS), extent and total perfusion deficit (TPD) of each 25 patient who have above diseases were compared and evaluated. Results: The case of CAD, when using re-edited AutoQuant (HT) SSS and SRS showed about 30% reduction (P<0.0001), Extent showed about 38% reduction and TPD showed about 30% reduction in the tendency (P<0.0001). In the score of the perfusion, especially on the part of infero-medium, infero-apical, lateral-medium and lateral-apical regions were the biggest change. The case of the 24 hrs delay patient SRS (P=0.042), Extent (P=0.018) and TPD (P=0.0024) showed about 13-18% reduction. And the case of simple pain patient, comparison of 4 results showed about 5-7% reduction. Conclusion: This study was started based on expectation that results could be affected by normal patient data. Normal patient data is possible to change by race and gender. It was proved that combination of new reconstruction algorithm for reducing scan time and analysis program according to scan protocol with NRA could also be affected to results. Clinical usefulness of gated myocardial SPECT is possibly increased if each hospital properly collects normal patient data for their scan acquisition protocol.

  • PDF

The Evaluation of Dynamic Continuous Mode in Brain SPECT (Brain SPECT 검사 시 Dynamic Continuous Mode의 유용성 평가)

  • Park, Sun Myung;Kim, Soo Yung;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Purpose During Brain SPECT study, critical factor for proper study with $^{99m}Tc-ECD$ or $^{99m}Tc-HMPAO$ is one of the important causes to patent's movement. It causes both improper diagnosis and examination failure. In this study, we evaluated the effect of Dynamic Continuous Mode Acquisition compared to Step and Shoot Mode to raise efficacy and reject the data set with movement, as well as, be reconstructed in certain criteria. Materials and Methods Deluxe Jaszczak phantom and Hoffman 3D Brain phantom were used to find proper standard data set and exact time. Step and Shoot Mode and Dynamic Continuous Mode Acquisition were performed with SymbiaT16. Firstly, Deluxe Jaszczak phantom was filled with $Na^{99m}TcO_4$ 370 MBq and obtained in 60 minutes to check spatial resolution compared with Step and Shoot Mode and Dynamic Continuous Mode. The second, the Hoffman 3D Phantom filled with $Na^{99m}TcO_4$ 74 MBq was acquired for 15 Frame/minutes to evaluate visual assessment and quantification. Finally, in the Deluxe Jaszczak phantom, Spheres and Rods were measured by MI Apps program as well as, checking counts with the frontal lobe, temporal lobe, occipital lobe, cerebellum and hypothalamus parts was performed in the Hoffman 3D Brain Phantom. Results In Brain SPECT Study, using Dynamic Continuous Mode rather than current Step and Shoot Mode, we can do the reading using the 20 to 50 % of the acquired image, and during the test if the patient moves, we can remove unneeded image to reduce the rate of restudy and reinjection. Conclusion Dynamic Continuous Mode in Brain study condition enhances effects compared to Step and Shoot Mode. And also is powerful method to reduce reacquisition rate caused by patient movement. The findings further indicate that it suggest rejection limit to maintain clinical value with certain reconstruction factors compared with Tomo data set. Further examination to improve spatial resolution, SPECT/CT should be the answer for that.

  • PDF

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

The Usefulness of LEUR Collimator for 1-Day Basal/Acetazolamide Brain Perfusion SPECT (1-Day Protocol을 사용하는 Brain Perfusion SPECT에서 LEUR 콜리메이터의 유용성)

  • Choi, Jin-Wook;Kim, Soo-Mee;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • Purpose: Basal/Acetazolamide-challenged brain perfusion SPECT is very useful to assess cerebral perfusion and vascular reserve. However, as there is a trade off between sensitivity and spatial resolution in the selection of collimator, the selection of optimal collimator is crucial. In this study, we examined three collimators to select optimal one for 1-day brain perfusion SPECT. Materials and Methods: Three collimators, low energy high resolution-parallel beam (LEHR-par), ultra resolution-fan beam (LEUR-fan) and super fine-fan beam (LESFR-fan), were tested for 1-day imaging using Triad XLT 9 (TRIONIX). The SPECT images of Hoffman 3D brain phantom filled with 99mTc of 170 MBq and a normal volunteer were acquired with a protocol of 50 kcts/frame and detector rotation of 3 degree. Filterd backprojection (FBP) reconstruction with Butterworth filter (cut off frequencies, 0.3 to 0.5) was performed. The quantitative and qualitative assessments for three collimators were performed. Results: The blind tests showed that LESFR-fan provided the best image quality for Hoffman brain phantom and the volunteer. However, images for all the collimator were evaluated as 'acceptable'. On the other hand, in order to meet the equivalent signal-to-noise ratio (SNR), total acquisition time or radioactivity dose for LESFR-fan must have been increased up to almost twice of that for LEUR-fan and LEHR-par. The volunteer test indicated that total acquisition time could be reduced approximately by 10 to 14 min in clinical practice using LEUR-fan and LEHR-par without significant loss on image quality, in comparison with LESFR-fan. Conclusion: Although LESFR-fan provides the best image quality, it requires significantly more acquisition time than LEUR-fan and LEHR-par to provide reasonable SNR. Since there is no significant clinical difference between three collimators, LEUR-fan and LEHR-par can be recommended as optimal collimators for 1-day brain perfusion imaging with respect to image quality and SNR.

  • PDF