• Title/Summary/Keyword: PET matrix composites

Search Result 18, Processing Time 0.026 seconds

Crystallinity and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Composites by Rapid Press Consolidation Technique (Consolidation 방법에 의해 제작된 유리섬유강화 복합재료의 결정성과 기계적성질에 관한 연구)

  • Shin, Ick-Jae;Kim, Dong-Young;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.91-96
    • /
    • 2000
  • Glass fiber reinforced thermoplastic composites were manufactured by Rapid Press Consolidation Technique(RPCT) as functions of temperature, pressure and time in pre-heating, consolidation and solidification sections during the manufacturing processing. It was found that the material property is greatly affected by pre-heating temperature under vacuum, mold temperature and molding pressure. Among them, the temperature In the mold was the most critical factor in determining the mechanical properties and the molded conditions of specimen. The crystallinity of PET matrix was also investigated by differential scanning calorimetry(DSC) measurements for various processing conditions. The level of crystallinity($X_c$) depended strongly on the mold temperature, cooling rate and the type of composite. The difference in $X_c$ is believed to be one of important factors in characterizing the mechanical properties.

  • PDF

Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique (고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건)

  • Lee, Dong-Ju;Sin, Ik-Jae;Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

Carbon Nanotubes Reinforced Poly(ethylene terephthalate) Nanocomposites (탄소나노튜브로 강화시킨 Poly(ethylene terephthalate) 나노복합재료)

  • Choi, Soohee;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.240-249
    • /
    • 2014
  • Multi-walled carbon nanotube (MWNT) reinforced poly(ethylene terephthalate) (PET) composites are studied. To increase the interfacial interactions between PET and MWNTs, the MWNTs are functionalized with bishydroxy-ethylene-terephthalate (BHET). The functionalized MWNTs are melt blended into PET matrix using a twin screw extruder. The amount of MWNTs loaded in PET matrix ranges from 0.5 to 2.0 wt%. After compounding and spinning, the filaments are post-drawn and annealed. To verify the chemical modifications of carbon nanotubes, Raman, $^1H$ NMR, XPS, TGA and FE-SEM are used. The nanocomposites are also analyzed with DSC, TGA, and UTM. These tests show that crystallization temperature and thermal degradation temperature increase due to the functionalized MWNTs. Also, tensile test shows that yield strength and toughness increase more than 30% with addition of only 1 wt% of MWNTs. These results show that the introduction of BHET onto the MWNTs is a very effective way in manufacturing MWNT/PET composite.

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

Interfacial and Pull-out Properties of PVA and PET Fiber with UV Irradiation in Cementitious Composites (시멘트 복합체 내에서 UV처리에 따른 PVA 및 PET섬유의 계면 및 매입인발특성)

  • Jeon, Esther;Lee, Sang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.401-404
    • /
    • 2006
  • Much of requirements to the civil and building structures have been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. In HPFRCC application, PVA fiber has been dominantly used as a reinforcement because of its excellent alkali resistant nature as well as high strength. But the inherent strong hydrophilicity of PVA fiber promotes the moisture absorption in cement matrix and thus it may cause the corrosion of steel structure. Therefore, it is necessary to control the interfacial adhesion of cement composites. In present study, to control the interfacial adhesion of the cementitious composites reinforced by PVA fiber, UV irradiation of the PVA fiber were performed and their effects on the adhesion property and general characteristics were investigated extensively.

  • PDF

A Study on the Tensile Strength of Glass Woven Fiber Reinforced PET Composites (직조유리섬유강화 PET수지 복합체의 인장특성에 관한 연구)

  • 김홍건;최창용
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • Tensile strength of the woven glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite manufactured by rapid press consolidation technique was investigated and evaluated. During pre-heating, consolidation and solidification stages, the optimal manufacturing conditions for this composite were discussed based on the void content and tensile properties depending on vacuum condition. It is found that the effect of vacuum condition during preheating gives a substantial difference on the strength as well as microstructure. It is also found that the failure micromechanism shows several energy absorption processes enhancing fracture toughness.

Effect of Aspect Ratio on Direct Tensile Response of Strain Hardening Cement Composites with PET and PVA Fiber (PET 및 PVA섬유를 사용한 변형경화형 시멘트 복합체의 직접인장거동에서 섬유 형상비의 영향)

  • Jeon, Esther;Yun, Hyun-Do;Park, Wan-Shin;Kim, Yong-Chul;Kim, Yun-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.913-916
    • /
    • 2008
  • Direct tensile response of strain hardening cement composites(SHCC) depends primarily on the material's tensile response, which is a water cement ratio, direct function of fiber and matrix characteristics, the bond between them, and the fiber volume fraction. This paper discusses effect of aspect ratio of the direct tensile response of SHCC with PET and PVA fibers. The main variables considered include the aspect ratio of PET fibers(Aspect ratio, ${\ell}/d_f$ : 150, 300, 600). For the same mixture proportion, PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600(Aspect ratio 300, 600) showed better overall behavior(Pseudo strain-hardening, Multiple cracking) than specimens with PET1.5+PVA0.5-150(Aspect ratio 150). Tensile strain of PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600 at ultimate tensile stress were 0.5, 2.0% respectively.

  • PDF

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Preparation and Properties of in situ Polymerized Poly(ethylene terephthalate)/Fumed Silica Nanocomposites

  • Hahm, Wan-Gyu;Myung, Hee-Soo;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 2004
  • We have prepared poly(ethylene terephthalate) (PET) nanocomposites filled with two different types of fumed silicas, hydrophilic (FS) and hydrophobic (MFS) silicas of 7-nm diameter, by in situ polymerization. We then investigated the morphological changes, rheological properties, crystallization behavior, and mechanical properties of the PET nanocomposites. Transmission electron microscopy (TEM) images indicate that the dispersibility of the fumed silica was improved effectively by in situ polymerization; in particular, MFS had better dispersibility than FS on the non-polar PET polymer. The crystallization behavior of the nanocomposites revealed a peculiar tendency: all the fillers acted as retarding agents for the crystallization of the PET nanocomposites. The incorporation of fumed silicas increased the intrinsic viscosities (IV) of the PET matrix, and the strong particleparticle interactions of the filler led to an increased melt viscosity. Additionally, the mechanical properties, toughness, and modules of the nano-composites all increased, even at low filler content.

Evaluation of SHCC on Direct Tensile Load using Acoustic Emission Technique (음향방출기법을 이용한 혼입되는 섬유의 종류에 따른 SHCC의 직접인장거동특성 평가)

  • Kim, Yun-Su;Yun, Hyun-Do;Jeon, Esther;Park, Wan-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.177-180
    • /
    • 2008
  • SHCC shows the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCC, it is needed to investigate the damage process and micro-fracture mechanism of cement matrix reinforced with different types of fibers. The objective of this paper is to investigate the direct tensile response of cement composites reinforced with single and hybrid fibers using acoustic emission(AE) technique. In this study, the correlations between AE signal and result of the direct tensile response of SHCC. For these purposes, three kinds of fibers were used: PET1.5%, PET1.0+PE0.5%, PET1.0%+PVA0.5%. The result of the direct tensile response of SHCC, for the same volume fraction of fibers, ultimate strength of PET-PE specimen was 2.7 times higher than specimens with PET fibers. And from AE signal value, AE event numbers and cumulative energy were different according to kind of fiber because of the different material properties of reinforced fiber.

  • PDF