• Title/Summary/Keyword: PET fiber

Search Result 464, Processing Time 0.024 seconds

Bond Performance of Recycled PET Bottle Fiber Reinforced Concrete (폐 PET병을 이용한 콘크리트 보강 섬유의 부착특성)

  • Won, Jong-Pil;Park, Chan-Gi;Lee, Su-Jin;Kim, Jung-Hoon;Kim, Hwang-Hee;Lee, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.373-376
    • /
    • 2006
  • The purpose of this study was manufactured and evaluated the bond performance of recycled polyethylene terephthalate(PET) bottle fiber reinforced concrete. Four deformed recycled PET bottle fibers were manufactured and pullout test was conducted in accordance with the JCI-SF 8. Test parameters included four different type of fiber geometry and two types of mortar specimens. According to bond test results, it was found that embossing type recycled PET bottle fiber was significant improving the pullout load and interface toughness.

  • PDF

Preparation and characterization of Poly (ethylene terephthalate) (PET) (가지 달린 poly (ethylene terephthalate) (PET)의 제조와 물성에 관한 연구)

  • Kim, Soochan;Park, Sungshin;Sooyun Jung;Kim, Jungsoo;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.203-204
    • /
    • 2003
  • Generally, polymeric foam has many advantages, such as light-weight, good impact absorptivity and adiabatic properties. Poly (ethylene terephthalate) PET has good recyclability and no toxicity. Hence, if we make foam of PET, it could be used for various applications such as heat insulating material, recyclable packing material, and food vessel. Thus these properties are attractive interests to manufacturers. (omitted)

  • PDF

Chemical Modification and Functionalisation of Poly(ethylene terephthalate) Fiber (폴리에틸렌테레프탈레이트 섬유의 화학개질 및 기능화)

  • 김인회;김성희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.389-399
    • /
    • 2002
  • Poly (ethylene terephthalate) (PET) fibers were modified by deep UV irradiation which was produced by a low pressure mercury lamp. FT-IR and XPS analyses were used to elucidate the surface chemical composition of PET fibers treated with UV. Relative $O_{1s}$ intensity increased considerably and it was found that oxygen was incorporated in the form of COO on the fiber surface. FT-IR and XPS analyses proved the existence of carboxylic groups on the surfaces and the adsorption test of cationic compound further supported these results. The concentration of carboxylic acid group on the surface increased remarkably with Increasing irradiation time. XPS analysis and adsorption experiments proved that the surface structure of the UV-irradiated PET fibers were stable for 12 months. Antibacterial property and the deodorization rate of UV-irradiated PET fibers adsorbed with the berberine compound were investigated. Reduction rates of bacteria increased by about 21 to 99% compared to unradiated PET fiber. Deodorization rates of 23% for unradiated PET fiber increased to about 75% for 30 min irradiated samples.s.

Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer (아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성)

  • Ahn, Dajeong;Choi, Chulhoon;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Interfacial Electrical Studies on Adhesion of Hematite Particle to Polyester Fabric and its Removal from the Fabric(Part I) -The interaction energy between particle and fabric- (Polyester직물에의 Hematite입자의 부착과 제거에 관한 계면전기적 고찰(제1보) -기질과 입자간의 상호작용에너지-)

  • Kang, In-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.380-390
    • /
    • 1993
  • Effect of interfacial electrical conditions on adhesion of ${\alpha}-Fe_2O_3$ particles to PET fabric and the removal of ${\alpha}-Fe_2O_3$ particles from PET fabric, were investigated as functions of pH, electrolyte and ionic strength. The ${\zeta}$ potential of PET fiber and ${\alpha}-Fe_2O_3$ particles in the electrolyte solution were measured by streaming potential and microelectrophoresis methods respectively. The potential energy of interaction between ${\alpha}-Fe_2O_3$ particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased with pH, and then decreased certain pH and isoelectric points of ${\alpha}-Fe_2O_3$ particles and PET fiber were pH 6.5 and pH 3.5, respectively. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber affected by electrolytes, were relatively high with polyanion electrolytes in solutions and were low with neutral salts. However, at surfactant solution, ${\zeta}$ potential was levelled off. The influence of the ionic strength on the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle was small but the negative ${\zeta}$ potential of PET fiber increased with the ionic strength. In the presence of anionic surfactant, the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased regardless of solution conditions. The interaction energy between ${\alpha}-Fe_2O_3$ particle and PET fabric increased with pH. The interaction energy was relatively high with polyanion electrolytes in solution, and the influence of ionic strength on the interaction energy was small, and the effective thickness of electrical double layer increased with decreasing the ionic strength.

  • PDF

Washing Fastness of PET Fibers according to Supercritical CO2 and Aqueous Dyeing Methods (초임계 CO2 및 수계 염색방법이 적용된 PET 섬유의 세탁견뢰도)

  • Oh, Jiyeon;Park, Changpyo;Kim, Sam Soo;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • In this study, C.I. Disperse Red 60 (DR60), C.I. Disperse Yellow 54 (DY54) dyes were used to investigate the washing fastness characteristics of PET fibers according to supercritical CO2 and aqueous dyeing process. The changes in K/S values and L⁎ values before and after washing of dyed PET fibers were observed according to the KS K ISO 105 washing fastness measurement method. In addition, it was confirmed by changing the ΔE⁎ and ΔL⁎ values of control PET fibers. Overall, it was confirmed that both the supercritical CO2 and aqueous dyeing process had excellent washing fastness ratings of 4-5 for DR60 and DY54 dyes. Comparatively, the K/S and L⁎ values for before and after washing of PET fibers with supercritical CO2 dyeing process was higher than that of the aqueous dyeing process and the ΔE⁎ and ΔL⁎ values of the control PET fibers were low. From the results, we observed that the supercritical CO2 dyeing process of PET fibers has better washing fastness characteristics than the aqueous dyeing process.

Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber (PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구)

  • Kim, Ji-Seop;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Synthesis and Properties of PET-PCT Copolyester I - Thermal Property and Degradation Behavior - (PET-PCT 공중합체의 합성과 물성 I - 열적성질과 분해거동 -)

  • 이원옥;김해영;백두현
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • Poly(ethylene terephthalate) (PET)는 물리적, 기계적 성질이 우수한 엔지니어링 플라스틱의 하나로 섬유, 필름, 및 여러 가지 용도로 다양하게 사용되고 있다. PET는 DMT(dimethyl terephthalate) 또는 TPA(terephthalic acid)와 EG(ethylene glycol)를 축합 중합하여 제조한다. (중략)

  • PDF

An Experimental Study on the Creep Behavior and Crack Resistance of Hwang-toh Concrete Mixed with Recycled-PET Fiber (재생 PET 섬유가 혼입된 황토 콘크리트의 크리프 거동과 균열저항성에 관한 실험적 연구)

  • Kim, Sung-Bae;Jay Kim, Jang-Ho;Han, Byung-Goo;Hong, Geon-Ho;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2009
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement used is suggested as one of the solutions for eco-friendly concrete. To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang-toh, which is broadly deposited in Korea is a well known environment friendly material and the activated hwang-toh, which has the property of pozzolan reaction, is alternatively used as a mineral admixture of concrete. The purpose of this study is to investigate the drying shrinkage of hwang-toh concrete mixed with recycled PET fiber. Therefore, drying shrinkage experiments are performed to analyze mechanical property of hwang-toh concrete mixed with recycled PET fiber. Test results showed that the drying shrinkage is controlled by hwang-toh admixture and PET fiber.