• 제목/요약/키워드: PET섬유

검색결과 456건 처리시간 0.042초

재생 PET섬유 보강 고강도 콘크리트 원형기둥의 내화성능 (Fire Resistance Performance of Recycling PET Fiber Reinforced High Strength Concrete Circular Column)

  • 서태석;공민호;권해원
    • 한국건축시공학회지
    • /
    • 제16권6호
    • /
    • pp.513-518
    • /
    • 2016
  • 본 연구에서는 PET섬유(혼입율: 0.05vol.%)로 보강된 60MPa 고강도 콘크리트의 내화특성을 검토하였다. 특히 원형 기둥에 대한 내화실험 결과가 아직까지 없기 때문에 콘크리트 원형기둥을 대상으로 내화시험을 실시하였다. 그 결과 PET섬유가 고강도 콘크리트 폭렬 제어에 효과가 있는 것을 확인할 수 있었다. 하지만 피복두께 30mm 시험체에서는 주철근 온도규정을 만족시키지 못하는 것으로 나타났고 피복두께 40mm 시험체에서는 주철근 온도규정을 만족하는 것으로 나타났다. 따라서 내화성능을 만족하기 위해서는 40mm 이상의 피복두께가 필요할 것으로 판단된다.

감량촉진제의 구조에 따른 PET섬유의 감량가공효과 (Effects of the Structure of Weight Loss Accelerating Agents on the Weight Loss in Alkaline Hydrolysis of PET Fibers)

  • 전동우;김승진;근장현;박홍수
    • 공업화학
    • /
    • 제5권1호
    • /
    • pp.63-73
    • /
    • 1994
  • n-Tetradecyldimethylbenzylammonium chloride(TDAC)와 n-tetradecyltrimethylammonium methyl sulfate (TTAM)를 합성하고 각각에 물을 가하여 감량촉진제 용액 TDACW와 TTAMW를 각각 제조하였다. 제조된 TDACW와 TTAMW 각각을 NaOH와 병용하여 PET섬유를 감량가공처리한 결과, 감량률은 TDACW가 TTAMW보다 훨씬 높게 나타났으며, 적정 처리농도는 약 $8g/{\ell}$, 처리시간은 60~90분 및 처리액량비는 1:40~1:50이었다. 밀도와 결정화도는 감량률이 증가할수록 상승하였고, 인장강도는 역으로 감량률이 증가될수록 저하되었다. 또한 감량촉진제와 PET섬유와의 반응메카니즘을 고찰하여 감량촉진제가 촉매로서 작용함을 밝혔으며, SEM으로 감량가공된 PET섬유의 표면형태를 관찰하였다.

  • PDF

아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가 (Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers )

  • 김동환;조민수;최진형;조우래;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.78-85
    • /
    • 2023
  • 이 연구는 하이브리드 섬유시트를 이용하여 보강된 철근콘크리트 기둥의 구조성능평가에 관한 연구이다. 내진보강 공법은 보강이 필요한 노후 콘크리트 구조물에 아라미드섬유와 PET섬유를 일축으로 배열하여 직조한 하이브리드 섬유시트를 에폭시로 함침하고, 이를 구조물에 부착시켜 보강 구조물의 내하력을 증진시키는데 그 목적이 있다. 특히, 강재보다 가벼운 섬유를 사용함으로써 얻어지는 재료의 경량화뿐만 아니라, 사용된 섬유 중 저강도 고인성의 섬유요소가 고강도 저인성 섬유요소의 취성적 파괴를 지연시켜 기존의 섬유보강 공법과 비교해 안전성 측면에서 우수하다. 연구는 구조실험과 그 결과에 대한 구조성능평가로 진행되었다. 총 4개의 실험체는 하이브리드 보강방법 및 파괴모드를 주요변수로 계획하였으며, 실험체 크기 및 가력조건 등은 기존연구에서 수행한 실험결과와 비교가 가능하도록 계획하였다. 실험체의 구조성능은 에너지소산능력, 연성평가등을 사용하여 평가하였다. 다음과 같은 분석을 통하여 하이브리드 섬유시트의 보강하였을 때 우수한 성능 결과를 보일 수 있다는 결론은 얻었다.

반응성분산염료의 나일론, PET, 면 및 복합소재에 대한 염색성 (Dyeing Properties of Reactive Disperse Dyes on Nylon, PET, Cotton and Mixture Fabrics)

  • 이효영;이승관;김성동;이종렬
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제44차 학술발표회
    • /
    • pp.34-34
    • /
    • 2011
  • PET/면, 나일론/PET, 나일론/면 등 다양한 복합섬유소재를 염색하기 위해서는 복합섬유소재를 구성하는 각각의 섬유소재에 따라 적합한 염료를 선정하고 그에 맞는 염색방법을 사용하여 진행되고 있다. 하지만 이런 경우 색상과 견뢰도 등의 물성을 맞추기 위한 복잡한 염색공정 및 긴 염색시간에 의한 생산비용 상승 등 여러 문제점이 있다. 이러한 문제점을 해결하기 위해 하나의 염료를 이용하여 다양한 섬유를 염색하는 방법에 대한 많은 연구가 이루어지고 있다. 새로운 염료합성의 경우 섬유와 결합할 수 있는 반응기를 분산염료구조에 도입하여 염색조건에 따라 다양한 섬유를 염색할 수 있는 universal dye의 개발에 초점이 맞추어져 있다. 반응성염료와 분산염료의 특성을 동시에 만족시키기 위한 일환으로서 염료의 분자 구조 내에 상기의 염료특성을 동시에 발휘하는 소위 "반응성 분산염료"의 개발이 이에 속한다. 본 연구의 목적은 화학구조가 다른 네 종류의 sulphatoethylsulphone기를 갖는 반응성분산염료들을 합성하고 이들의 나일론, PET, 면 및 교직물에 대한 염색성을 분석하는 것이다. 면 섬유에 대한 Dye 1~4의 염색온도에 따른 염색성을 살펴보면, 각 염료들의 염색성은 염색온도에 따라 큰 영향을 받고 있음을 알 수 있으며, Dye 1, 4는 염색온도가 높을수록 K/S 값이 증가하고 Dye 2, 3은 염색온도가 낮을수록 K/S 값이 증가함을 알 수 있다. Nylon에 대한 Dye 1의 염색속도는 pH 4 > pH 5 > pH 8 > pH 7 > pH 6의 순서로 나타나 pH 6에서의 염착 평형이 pH 4보다 40분 정도 늦게 도달하였다. 나일론과 PET의 동욕염색에 있어 Dye 1은 나일론의 경우 초기부터 빠른 흡착을 보이며 $100^{\circ}C$가 되는 60분에는 K/S값이 16에 도달하여 염착 평형에 근접한 것을 알 수 있으며, PET는 $100-200^{\circ}C$ 사이에서 염색속도가 빨라지며 본격적으로 흡수하였다. N/C 교직물에 대한 Dye 2, 3의 빌드업성은 두 염료 모두 염료농도의 증가에 따라 K/S 값 역시 선형적으로 증가하는 것으로 나타났다. 나일론 섬유는 네 가지 염료로 우수하게 염색되었고, 면 섬유는 수용성기를 가진 Dye 2와 3, 그리고 PET 섬유는 소수성이 높은 Dye 1과 4가 적합하였다. N/P 및 N/C 교직물의 염색에 있어 나일론 성분으로 염료가 더 많이 흡착하여 나일론섬유가 더 진하게 염색되지만 교직물의 직물조직에 의하여 표면과 이면은 각각 거의 동색으로 보였다.

  • PDF

Poly(lactic acid) 용융방사공정의 동역학 해석 (Analysis on Po1y(lactic acid) Melt Spinning Dynamics)

  • 오태환;김성철
    • 청정기술
    • /
    • 제15권4호
    • /
    • pp.245-252
    • /
    • 2009
  • Poly(lactic acid) (PLA) 용융방사공정의 속도, 직경, 온도, 인장응력 분포를 구하기 위해 수치모사를 실시하였다. 유한차분법을 이용하여 반지름 방향으로의 온도분포곡선을 구하였다. 방사속도 1 km/min에서 5 km/min까지 방사속도에 따른 PLA 방사공정의 변화와 poly(ethylene terephthalate) (PET)와의 거동을 비교해 보았고, 방사공정변수가 섬유 중심부와 표면과의 온도차에 미치는 영향을 살펴보았다. PLA는 용융온도가 PET에 비해 낮음에도 불구하고 동일 방사조건에서 더딘 냉각속도를 보였고 방사거리에 따른 방사속도의 증가도 PET가 더 빠른 양상을 나타내었다. PLA의 섬유중심부와 섬유표면과의 온도차는 약 4.6 K에 이르렀는데, 이는 PET의 10.4 K에 비하여 낮은 값이다. PLA 섬유중심부와 표면과의 온도차는 냉각풍속도와 방사온도가 증가할수록 증가하였고, 냉각풍 온도가 감소할수록 증가하는 경향을 나타내었다.