• 제목/요약/키워드: PES substrate

검색결과 85건 처리시간 0.025초

증착조건과 진공열처리 온도에 따른 ITO/PES 박막의 특성 연구 (Properties of ITO on PES film in dependence on the coating conditions and vacuum annealing temperatures)

  • 이재영;박지혜;김유성;천희곤;유용주;김대일
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.227-231
    • /
    • 2007
  • Transparent conducting indium tin oxide (ITO) films were deposited onto the Polyethersulfone (PES) substrate by using a magnetron sputter type negative metal ion source. In order to investigate the influence of cesium (Cs) partial pressure during deposition and annealing temperature on the optoelectrical properties of ITO/PES film the films were deposited under different Cs partial pressures and post deposition annealed under different annealing temperature from $100^{\circ}C$ to $170^{\circ}C$ for 20 min at $3\;{\times}\;10^{-1}$ Pa. Optoeleetrical properties of ITO films deposited without intentional substrate heating was influenced strongly by the Cs partial pressure and the Cs partial pressure of $1.5\;{\times}\;10^{-3}$ Pa was characterized as an optimal Cs flow condition. By increasing post-deposition vacuum annealing temperature both optical transmission in visible light region and electrical conductivity of ITO films were increased. Atomic force microscopy (AFM) micrographs showed that the surface roughness also varied with post-deposition vacuum annealing temperature.

The PL Characteristics of ZnO Thin Film on Flexible Polymer by Pulse Laser Deposition

  • Choi, Young-Jin;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.245-247
    • /
    • 2012
  • In this study, ZnO films have been grown on PES (polyethersulfone) of flexible polymer substrate by PLD (pulsed laser deposition) and characterized for crystalline and optical properties. Growing conditions were changed with substrate temperatures ranging from 50 to $200^{\circ}C$ and laser power density ranging from 0.2 to $0.4J/cm^2$. When ZnO thin films are deposited at low temperature with a small laser power density, the (002) peaks of XRD to signify the crystal quality of ZnO thin films appear to be very weak and the (101) peaks to signify the chemical composition of oxygen and zinc are strong. The (002) peaks increase with the substrate temperature and laser power density because the energy needed for the supply of the combination regarding zinc and oxygen has increased. In this study, the best condition for growing ZnO thin film on PES is at a substrate temperature of $200^{\circ}C$ and with a laser density of $0.3J/cm^2$. The characteristics of PL were measured by UV and green luminescence.

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향 (Effect of Working Pressure on the Electrical and Optical Properties of ITZO Thin Films Deposited on PES Substrate with SiO2 Buffer Layer)

  • 정양희;최병균;강성준
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.887-892
    • /
    • 2019
  • 본 연구에서는 플라스틱 기판 중에서 가장 내열성이 우수하다고 알려진 PES 기판위에 버퍼층으로 20nm두께로 $SiO_2$ 박막을 플라즈마 화학기상증착 법으로 증착한 후, ITZO 박막을 고주파 마그네트론 스퍼터링 법으로 증착하여 공정압력에 따른 ITZO 박막의 전기적 및 광학적 특성을 조사하였다. 공정압력 3 mTorr 에서 증착한 ITZO 박막이 $8.02{\times}10^{-4}{\Omega}-cm$의 비저항과 $50.13{\Omega}/sq.$의 면저항으로 가장 우수한 전기적 특성을 보였다. 모든 ITZO 박막의 가시광 영역(400-800 nm)에서 평균 투과도는 공정압력에 무관하게 80 %이상으로 나타났다. 재료평가지수는 3 mTorr에서 증착한 ITZO 박막에서 $23.90{\times}10^{-4}{\Omega}^{-1}$로 가장 큰 값을 나타내었다. 본 연구를 통해 ITZO 박막이 차세대 플렉시블 디스플레이 소자에서 ITO 박막을 대체할 매우 유망한 재료라는 것을 알 수 있었다.

RF파워가 SiO2/PES 기판위에 증착한 ITZO 박막의 광학적 및 전기적 특성에 미치는 효과 (Influence of the RF Power on the Optical and Electrical Properties of ITZO Thin Films Deposited on SiO2/PES Substrate)

  • 최병균;정양희;강성준
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.443-450
    • /
    • 2021
  • 플라스틱 기판 중에서 열적 안정성과 광학적 특성이 우수한 PES 기판을 선택한 후, 흡습성이 높은 단점을 보완하기 위해 플라즈마 화학기상증착 법으로 SiO2 박막을 버퍼층으로 20nm 두께로 증착하였다. 그 후 ITZO 박막을 고주파 마그네트론 스퍼터링 법으로 증착하여 RF파워에 따른 전기적 및 광학적 특성들을 조사하였다. RF파워 50W에서 증착한 ITZO 박막이 8.02 × 10-4 Ω-cm의 비저항과 50.13 Ω/sq.의 면저항으로 가장 우수한 전기적 특성을 나타내었다. ITZO 박막의 가시광 영역(400-800 nm)에서의 평균 투과도는 RF파워가 40, 50W인 경우 80% 이상으로 비교적 높은 값을 나타내었다. 재료 평가 지수들인 ΦTC와 FOM은 RF파워 50W에서 증착한 ITZO 박막에서 각각 23.90×10-4-1와 5883 Ω-1cm-1로 가장 큰 값을 나타내었다.

PLD법으로 PES 기판 위에 제작된 Mg0.1Zn0.9O 박막의 제작 조건에 따른 특성 (The Characteristics of Mg0.1Zn0.9O Thin Films on PES Substrate According to Fabricated Conditions by PLD)

  • 김상현;이현민;장낙원;박미선;이원재;김홍승
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.602-607
    • /
    • 2013
  • Concern for the TOS (Transparent Oxide Semiconductor) is increasing with the recent increase in interest for flexible device. Especially MgZnO has attracted a lot of attention. $Mg_xZn_{1-x}O$, which ZnO-based wideband-gap alloys is tuneable the band-gap ranges from 3.36 eV to 7.8 eV. In particular, the flexible substrate, the crystal structure of the amorphous as well as the surface morphology is not good. So research of MgZnO thin films growth on flexible substrate is essential. Therefore, in this study, we studied on the effects of the oxygen partial pressure on the structural and crystalline of $Mg_{0.1}Zn_{0.9}O$ thin films. MgZnO thin films were deposited on PES substrate by using pulsed laser deposition. We used XRD and AFM in order to observe the structural characteristics of MgZnO thin films. UV-visible spectrophotometer was used to get the band gap and transmittance. Crystallization was done at a low oxygen partial pressure. The crystallinity of MgZnO thin films with increasing temperature was improved, Grain size and RMS of the films were increased. MgZnO thin films showed high transmittance over 80% in the visible region.

다양한 기판에 제작한 ITO 박막의 실온 특성 변화 (Properties of ITO thin film's aging change prepared on the various substrate)

  • 김상모;임유승;손인환;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.403-404
    • /
    • 2008
  • In this study, we prepared ITO thin film on glass, polycarbonate (PC) and polyethersulfone (PES) substrate in Facing Targets sputtering (FTS) system. Properties of as-deposited thin films's aging change were investigated as a function of time placed in the air. The electrical and optical properties of as-deposited thin films were employed by a four point probe and an UV/VIS spectrometer, an X-ray diffractometer (XRD), a Field Emission Scanning Electron Microscope(FESEM) and a Hall Effect measurement. As a result, as time went by, transmittance of all films did not change but resistivity of films was decreasing.

  • PDF

공정변수에 의한 flexible 기판상의 ZnO:Al 박막의 제작 (Preparation of ZnO:Al thin film on flexible substrate by process variable)

  • 조범진;금민종;손인환;최동진;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.444-445
    • /
    • 2006
  • We prepared ZnO:Al thin films under various sputtering conditions by using facing targets sputtering (FTS) method. ZnO:Al thin films were deposited on polyethersulfon (PES) substrate which is the thickness of 200um at room temperature. the electrical, optical and crystallographic properties of ZnO:Al were investigated. From the results, prepared alll ZnO:Al thin films showed (002) diffraction peaks. ZnO:Al thin film with a resistivity of $8.4{\times}10^{-4}{\Omega}cm$ and a transmittance of over 80% in visible range was obtained.

  • PDF

Characteristics of the indium tin oxide film grown on PES and PET substrates by a low-frequency magnetron sputtering method

  • Jung, Sang-Kooun;Lee, Sung-Ho;Kim, Myung-Chan;Lee, Do-Kyung;Cho, Yong;Park, Duck-Kyu;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1560-1563
    • /
    • 2005
  • In this study, we introduce indium tin oxide (ITO) thin films grown by using a low-frequency magnetron sputtering method (LFMSM). Characteristics of the ITO thin films deposited on polyethersulfone (PES) and polyethylene terephthalate (PET) substrates are investigated. Experiments were carried out as a function of deposition time. ITO thin films on polymer substrates revealed amorphous structure. The optical, the electrical and structural properties of the films on PES substrate are better than those on PET substrates.

  • PDF

PES 기판상에 제작한 ITO 박막의 특성 (Characteristics of ITO thin films prepared on PES substarte)

  • 김상모;임유승;조범진;금민종;김경환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.69-70
    • /
    • 2006
  • The ITO thin films were prepared by Facing Targets Sputtering(FTS) method on polyethersulfon(PES) substrate. The ITO thin films were deposited with the film thickness of 100nm at room temperature and working gas pressure of 1 mTorr. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were evaluated by Hall Effect Measurement(EGK) and UV-VIS spectrometer(HP), respectively. From the results, the ITO thin films was deposited was with a resistivity $8.3{\times}10^{-4}[{\Omega}-cm]$ and transmittance over 80% in the visible range.

  • PDF