• Title/Summary/Keyword: PENDULUM PUTTING MACHINE

Search Result 3, Processing Time 0.016 seconds

A Development of Pendulum Putting Machine for the Experiments of Putting Stroke (퍼팅 스트로크 실험용 진자퍼팅기 개발)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • The purpose of this study was to develop the experimental machine for the putting strokes. This experimental machine is called Pendulum Putting Machine(PPM). The height of PPM is 75cm and the mass is 10kg. To make the frame of this machine, 24 and 20 diameters of iron pipes were used. Bottom of the frame(bottom girdle) was made with circle shape and top of the frame(top girdle) was made with rectangular shape. Above the top girdle, iron plate($12{\times}17{\times}0.5cm$) was placed to connect the ball bearing. At the top of the frame two ball bearings with axis were placed for the diverse lies of putters and irons. To verify usefulness of this machine, experiments were executed with the PPM. Two major experimental conditions were hitting points(sweet spot, toe side, heel side) and hitting places(bottom, 3cm before bottom, 3cm after bottom). Eleven different cases were tested. The results showed that the diversity of the ball placement(distance and direction) was acceptable(distance range, 2.70-5.87 standard deviation; direction range, 1.71-4.65 standard deviation). Overall the Pendulum Putting Machine is very useful for the study of putting and driving strokes.

Changes of Various Balls Velocity under the Different Surface Conditions after Impact (충돌 후 지면 조건에 따른 다양한 볼의 속도변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • The purpose of this study was to investigate the changes of various balls velocity under the different surface conditions after impact. For this study, four different balls were used which are golf ball, tang-tang ball, table tennis ball, and iron ball. And two different types of ground conditions were used which are artificial grass green and glass green. Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. To transfer the same amount of kinetic energy to the ball, pendulum putting machine was used. Analyzing the process of impact and the ball movement, a putter was digitized the whole movement but the ball was digizited within the 50cm movement. Velocities were calculated by the first central difference method(Hamill & Knutzen, 1995). Putter head velocities were about 112.2cm/s-116.2cm/s at impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Table tennis ball recorded higher ball velocities than the other ball velocities and iron ball recorded the lowest ball velocity in this group. But Table tennis ball was influenced with the frictional force and immediately was decreased at the artificial grass green condition. If an object is received the kinetic energy under the static condition(v=0cm/s), the object recorded the maximum velocity shortly after the impact and then decreased the velocity because of the frictional force. The ball distance from the start position to the peak velocity position is about 6cm-10cm under the 112.2cm/s-116.2cm/s putting velocity with putter. 0.25 seconds later after impact balls were placed 40cm distance from the original position except iron ball. In this study, ball moving distances were too short therefore it was not possible to investigate the reactions after the translational force is disappeared. Rotational force would play a major role at the end of the ball movement. Future study must accept two things. One is long distance movement of ball and the other is balanced ground. Three-piece ball is a good item to investigate the golf ball movement on the different surface conditions.

Ball Velocity Changes Depending on the Different Linear Momentum of Putter Head during the Putting Strokes (퍼팅 스트로크에서 퍼터의 선 운동량 크기에 따른 볼의 이동 속도 변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2007
  • The purpose of this study was to investigate the ball velocity changes depending on the different linear momentum of putter head. For this study, two different moving conditions(25cm free fall and 35cm free fall) of putter head were set. And two different types of ground conditions were used which are artificial grass green($180cm{\times}600cm{\times}1cm$) and glass green($40cm{\times}130cm{\times}1cm$). Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. Ball and putter head velocities were calculated by the First Central Difference Method(Hamill & Knutzen, 1995). Linear momentum of ball and putter head were calculated with mass and its velocities. Before impact, the velocity of the putter head of 35cm free fall was about 30% greater than that of the putter head of 25cm free fall. Linear momentum of putter head of 35cm free fall was about 0.355-0.364kg m/s and 25cm free fall was 0.251 kg m/s. After impact, putter head lost its linear momentum about 14-19% and adjusting time of putter head after impact would be 0.1 second. After 0.1 second, putter moved the route same as before impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Ball velocities struck by 35cm free fall were 30 % faster than 25cm free fall. Linear momentum of ball struck by putter head was greater than that of expected amount because the moving ball has translational energy and rotational energy. Future study must treat three things. One is ball must struck by the different putters with different materials. Another is two-piece ball and three-piece ball should be used for the same condition studies. The other is height of center of rotation of club should be changed. In this study, the height of center of rotation of club head is 71cm from the ground. But recently many golfers used the long putter. Therefore next study should apply the different height of center of rotation of club head.