• Title/Summary/Keyword: PEMFC vehicle

Search Result 62, Processing Time 0.036 seconds

Modeling and Analysis of PEMFC/Battery/Photovoltaic Hybrid Vehicle (고분자 전해질형 연료전지/2차전지/태양전지 하이브리드 자동차에 대한 모델링 및 특성평가)

  • Ji, Hyun-Jin;Ahn, Hyo-Jung;Cha, Suk-Won;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2255-2260
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 30%).

  • PDF

Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle (연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가)

  • Ahn, Hyo-Jung;Ji, Hyun-Jin;Bae, Joong-Myeon;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

Cell Voltage Monitoring of PEMFC Power Module for Fuel Cell Electric Vehicle (연료전지 차량용 PEMFC 발전모듈의 셀전압 측정)

  • Park Hyunseok;Jeon Ywunseok;Ku Bonwoong;Choi Seoho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.388-391
    • /
    • 2005
  • In this paper, Cell voltage monitoring method is studied for fault detection of PEMFC(Proton Exchange Membrane Fuel Cell) for FCEV(fuel cell electric vehicle). To measuring several hundred of cells in fuel cell stack, The demanded feature of hardware and software is studied and several types are analysed. Finally, $3.26\%$ maximum measuring error is acquired and verified experimentally.

  • PDF

The Effect of Air Pollutant to Fuel Cell Electric Vehicle (대기오염물질로 인한 연료전지자동차 출력 변화에 대한 연구)

  • Rhee, Jun-Ki;Park, Sang-Sun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.154-157
    • /
    • 2009
  • Fuel cell is spotlighted as next energy source of future. The fuel of vehicle will be changed from fossil fuel such as gasoline, diesel to hydrogen. Polymer electrolyte membrane fuel cell(PEMFC) will be used to fuel cell vehicle because of its suitability. PEMFCs need oxygen for cathode. Because PEMFCs in vehicle use air for oxygen, air pollutant will be effect to performance of PEMFC. In this study, we examine a type of filter and pollutant gas how can be effect to performance of fuel cell electric vehicle.

  • PDF

Development of PEMFC stack for Fuelcell vehicle (자동차용 PEMFC 스택 개발)

  • Shin Hwansoo;Cho Gyutaek;Seong Yongjin;Kim Yungmin;Seo Jinsik;Kim Saehoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.374-377
    • /
    • 2005
  • Hyundai motor company has designed a above 50kW-class PEMFC stack for Fuelcell vehicle based on SUV. Hyundai increased the power density of the stack through the optimized flowfield of bipolar plate, manifold structure, and improvement of sealing, etc. Also, Gas to Gas humidifier was adopted in fuelcell system to reduce the system humidification load, it had been proven by short stack test. Components of stack, bilpolar plate, manifold, were analyzed through the computer simulation, so temperature and pressure distribution in the components and system were improved. This stack tested in Bread Board which was organized similar to real vehicle system.

  • PDF

Performance Comparison Between Stationary PEMFC MEA and Automobile MEA under Pure Hydrogen Supply Condition (순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교)

  • Oh, Sohyeong;Lee, Mihwa;Lee, Hakju;Kim, Wookwon;Park, Jeong-Woo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.469-473
    • /
    • 2018
  • When pure hydrogen was supplied to the stationary PEMFC generally using the reforming gas, its characteristics were compared with the vehicle PEMFC. The effect of varying the amount of hydrogen supply to the anode on the overall performance was compared. The variation of hydrogen supply in the range of 1.0~1.7 excess (stoi.) had little effect on the OCV of stationary and vehicle MEA (Membrane and Electrode Assembly). At 0.7 V, the current density of the stationary MEA was about 16% higher than that of the vehicle MEA. I-V performance, impedance, and LSV were measured with varying relative humidity. Both OCV and electrolyte membrane resistances decreased with increasing relative humidity. The hydrogen permeability of the stationary MEA was lower than that of the vehicle MEA, showing that the durability of the stationary membrane could be higher than that of the vehicle membrane.

Numerical Analysis-Based Design of PEMFC Channel, Fabrication of Channels, and Performance Test Using SU-8 (수치해석을 통한 PEMFC 채널의 설계와 SU-8을 이용한 채널 제작 및 성능 평가)

  • Choi, In-Jea;Wang, Hak-Min;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Fuel cells have attracted enormous interest as new power sources because the cells can be used to solve the problem of environmental pollution as well as the natural-resource exhaustion problem. In this study, hydrogen-gas flow in microchannels of different shapes was numerically analyzed to improve the efficiency of a microfuel cell. Flow characteristics in six microchannels of different shapes but under identical boundary conditions were simulated. The analysis result shows that the flow characteristics such as velocity, uniformity, and flow rate, greatly depend upon the channel shape. This implies that the efficiency of microfuel cell can be expected to be increased by adopting the optimal configuration of channel shape for hydrogen-gas flow. The experimental results show that power density of a PEMFC with a microflow channel is higher than that of a PEMFC without a microflow channel; however, a durable catalyst is required in MEA.

Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV (무인항공기용 고분자전해질형 연료전지 시스템의 열교환기 성능 특성 연구)

  • Kang, Sang-Gyu;Kim, Byung-Jun;Kim, Han-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2011
  • The proton exchange membrane fuel cell (PEMFC) is regarded as the most promising alternative power sources for unmanned aerial vehicle (UAV) due to its high energy density and silent operation. Since there are many load changes during UAV flight, thermal management is one of the important factor for the performance of PEMFC. In order to reduce the UAV weight for the stable operation of UAV, thermal management system (TMS) studied in this work does not use the fan but use the air flowing into UAV by UAV flight. In order to develop the passive type heat exchanger (HEX) for 1kW PEMFC, four types of HEXs are fabricated and their cooling performances are compared. The parametric study on the cooling performance of HEXs has performed with the variation of operating parameters such as mass flow rates and inlet temperature of air and coolant. Type 4 has the best performance in every case. This study can be helpful to achieve the optimal design of HEX for PEMFC powered UAV.

The thermal cycle degration of MEA in PEMFC under cold start condition (냉시동 환경에서 thermal cycle이 FEMFC의 MEA 열화에 미치는 영향)

  • Rhee, Jun-Kee;Seo, Dong-Ho;Jeon, Yu-Kwon;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.412-414
    • /
    • 2009
  • In recent times, starting up polymer electrolyte membrane fuel cells(PEMFC) in sub-zero condition is a great challenge of fuel cell electric vehicle(FCEV). The water produced in a cathode during PEMFCs operate. The water changes into the form of solid/ice in sub-zero temperatures and this makes trouble in PEMFC cells. Voltage of PEMFC drops and cold startup is failed. This paper describes an experimental study on the effect of thermal cycle to degradation of MEA in PEMFC.

  • PDF

A Study of the Effect of Compressor Performance Map on the Efficiency of High-pressure Operating PEMFC Systems in Automotive Applications (압축기 성능 맵이 자동차용 가압형 고분자전해질형 연료전지 시스템 효율에 미치는 영향 연구)

  • Cho, Donghoon;Kim, Han-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.604-611
    • /
    • 2012
  • For the commercialization of fuel cell powered vehicle, it is highly important to improve the performance and efficiency of an automotive polymer electrolyte membrane fuel cell (PEMFC) system. The performance and efficiency of PEMFC systems are significantly influenced by their operating conditions. Among these conditions, the system operating pressure is considered as the one of the main factors. In this study, to investigate the effects of operating pressure on the performance and efficiency of automotive PEMFC systems, two types of high-pressure operating PEMFC systems adopting two different compressors (i. e. different performance maps) are modeled by using MATLAB/Simulink environment. The PEMFC system efficiency and parasitic compressor power are mainly analyzed and compared for the two types of high-pressure operating PEMFC systems under the same system net power conditions. It is expected that this kind of study can contribute to provide basic insight into the operating strategies of high-pressure operating PEMFC systems for automotive use.