• Title/Summary/Keyword: PEG2

Search Result 853, Processing Time 0.03 seconds

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Studies on the Polyethylene Glycol-induced Fusion of Two-cell Mouse Embryo Blastomeres (Polyethylene Glycol 처리에 의한 생쥐 2세포기배의 분할구 융합에 관한 연구)

  • 양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 1990
  • This study was conducted to develop a simple and efficient technique for fusing 2-cell mouse embryos to obtain tertraploid embryos. Various concentration of PEG and exposure times were compared in order to determine the best condition for fusion and subsequent of fused embryos. The results obtained were follows ; 1. The incidence of fusion induction treated with 40% PEG(70.8%) and 45%(62.7%) for 60 sec. exposure were higher than those of 40% and 45% PEG for 30 sec., 90 sec., or 120 sec. exposure group. Also, the highest incidence of fusion induction(76.9%) was achieved with 120 sec. exposure at 50% PEG concentration. 2. Fused embryos after PEG treatment were cleavaged 2-to 4-cell, 8-cell, morula and blastocyst at 20-24 hr., 30-34., 44-52 hr., respectively, and were not different from those obtained fleshly. 3. The high proportions of the embryos developed to blastocysts after blastomere fusion with 40% PEG for 60 sec., 45% PEG for 60 sec. and 50% for 120 sec. were 66.7%(42/63), 69.0%(29/42) and 32.0%(16/50), respectively, this trend indicated that the fusion rate was similar to the incidence of fused embryos forming blastocysts. 4. The cell number of blastocyst developed from fused embryos(18.7 2.6) was samller than that of untreated embryos(48.9 1.69)

  • PDF

Synthesis of Polyurethane Microgel Containing PEG by Solution Polymerization (용액중합에 의한 PEG 함유 Polyurethane Microgel의 합성)

  • Park, Chul Soon;Shin, Young Jae;Lee, Chun Il;Pyo, Hyeong Bae;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2007
  • Poly(ethylene glycol) (PEG), isophoron diisocyanate (IPDI), and 1,1,1-tris(hydroxymethyl)propane (THMP) were used to synthesize polyurethane microgel. The formulation to form a microgel was determined, and the shape and the properties of the microgel were characterized with SEM and particle size analyzer. The microgel was only formed when PEG was used more than THMP exceedingly. Therefore, it is believed that PEG plays an important role in the synthesis of the microgel. During the formation of the microgel, the viscosity of the microgel solution was decreased. Molecular weights of the PEGs which were used in this research were 2,000, 6,000, and 10,000. The microgel synthesized with PEG 6000 showed the best property in comparison with others. The size of the microgel measured by particle size analyzer were about 130~230 nm.

  • PDF

Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors (광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성)

  • Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • In this word as the first step to develop optical biosensors for a single cell level analysis, the preparation method of nano-scale polymer hydrogel spheres containing an enzyme was set up and the feasibility of the spheres as optical biosensors was investigated. The horseradish peroxidase (HRP) was encapsulated in the PEG hydrogel spheres by suspension photopolymerization, yielding spheres of the average size of 305 nm. After the polymerization, the incorporation and activity of HRP within the spheres were determined by the production of fluorescence resulted from the enzymatic reaction between HRP and $\H_{2}O_{2}$. The fluorescence emission response of the HRP-loaded PEG hydrogel spheres increased by nearly 300$\%$ as hydrogen peroxide concentration was changed from 0 to 11 nM in the presence of Amplex Red. The results suggest that the method to prepare the PEG hydrogel nanospheres containing an enzyme could be used for developing optical biosensors to measure various analytes in the very small samples like a single cell.

Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber (In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향)

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2009
  • PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.

Effect of Polyethylene Glycol Treatment on the Wrinkle Resistance and the Dyeability of Cotton Fabrics (PEG 처리가 면질물의 방춘성 및 염색성에 미치는 영향)

  • 권영아
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.992-1001
    • /
    • 1996
  • The binding of polyethylene glycol (PEG, average molecular weight 600) to cotton fabrics was achieved by using pad-dry-cure process in the presence of citric acid, MgCl3·6H3O, DMDHEU, and TEAHCL. Treated fabrics were dyed with direct, acid, and basic dye. Wrinkle recovery angles, durable press rate, wettability, dyeability and color fastness to washing of all treated cottons were evaluated. The results of this study were as follows: 1. The wrinkle resistance of the PEG treated cottons was increased by increasing PEG and DMDHEU concentration. 2. The wettability of the PEG treated cottons was decreased by increasing PEG and DMDHEU concentration, increased by increasing TEAHCL concentration. 3. PEG/DMDHEU/TEAHCL treated cottons had greater affinity on direct, acid, and basic dye than untreated cottons, and dyeability of the modified cottons was improved compare to untreated fabrics. 4. Color fastness to washing of the PEG/DMDHEU/TEAHCL treated cottons was good except for the wash fastness of the direct dye.

  • PDF

Regulation and Function of the Peg3 Imprinted Domain

  • He, Hongzhi;Kim, Joomyeong
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • A subset of mammalian genes differ functionally between two alleles due to genomic imprinting, and seven such genes (Peg3, Usp29, APeg3, Zfp264, Zim1, Zim2, Zim3) are localized within the 500-kb genomic interval of the human and mouse genomes, constituting the Peg3 imprinted domain. This Peg3 domain shares several features with the other imprinted domains, including an evolutionarily conserved domain structure, along with transcriptional co-regulation through shared cis regulatory elements, as well as functional roles in controlling fetal growth rates and maternal-caring behaviors. The Peg3 domain also displays some unique features, including YY1-mediated regulation of transcription and imprinting; conversion and adaptation of several protein-coding members as ncRNA genes during evolution; and its close connection to human cancers through the potential tumor suppressor functions of Peg3 and Usp29. In this review, we summarize and discuss these features of the Peg3 domain.

Mechanical properties of domestic small-diameter logs treated with Polyethylene glycol (PEG(Polyethylene Glycol)처리재의 역학적 특성)

  • 권구중;김남훈
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This study was carried out to investigate the mechanical properties of woods treated with 30% aqueous solution of PEG 1000. Compressive, bending and shearing strengths were slightly decreased by PEG treatment. Absorbed energy in impact bending did not show any significant differences between untreated and PEG-treated woods.

  • PDF

Effect of Plasticizer on Electrolyte Membranes for Dye Sensitized Solar Cells (염료감응형 태양전지를 위한 고분자 전해질막에서의 가소제의 효과)

  • Cho, Doo-Hyun;Jung, Yoo-Young;Yun, Mi-Hye;Kwon, So-Young;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Using poly(ethylene oxide) (PEO) as a polymer host, poly(ethylene glycol) (PEG) as a plasticizer, potassium iodide and iodine as sources of $I^-/{I_3}^-$ PEO-PEG-KI/$I_2$ polymer gel electrolytes were prepared. Based on the polymer gel electrolytes, solid-state dye-sensitized solar cell(DSSC)s were fabricated. The content of PEG in the electrolyte was changed from 0 to 85%. The electrolyte showed self-supporting form through whole range of the PEG content. As the PEG content increased, the ionic conductivity and ${I_3}^-$ diffusivity increased and the light-to electrical energy conversion efficiency increased under irradiation of 100 $mWcm^{-2}$ simulated sunlight.