• Title/Summary/Keyword: PEG-PDMS coating

Search Result 5, Processing Time 0.016 seconds

Fabrication of In-needle Microextraction Device Using Nichrome Wire Coated with Poly(ethylene glycol) and Poly(dimethylsiloxane) for Determination of Volatile Compounds in Lavender Oils

  • Lee, Eun Ji;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.211-217
    • /
    • 2014
  • A new needle-based device for headspace wire coated in-needle microextraction (HS-WC-INME) was fabricated using a nichrome wire coated with poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) mixture. The proposed needle device was applied for the determination of volatile compounds in lavender and lavandin essential oils by gas chromatography. Fundamental parameters such as needle design, conditions of extraction and desorption were optimized along with the validation of the extraction and desorption efficiency. The optimal conditions were 30 min extraction at $50^{\circ}C$ and 2 min desorption at $240^{\circ}C$. The calibration curves showed good linearity with the suitable values of the coefficients of determination ($r^2$) greater than 0.99. The limits of detection for linalyl acetate, ${\beta}$-caryophyllene, linalool and (+)-limonene were 7.15, 9.04, 10.79 and 22.26 ng, respectively. Analytical recoveries were acceptable in the test samples, varying from 86.7% to 108.0%. The values of relative standard deviations for run to run showed range less than 0.9% while 3.9% through 7.2% for needle to needle. The proposed PEG-PDMS coating could be more suitable than PDMS coating to extract particular polar groups such as alcohols.

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

Synthesis and Characterization of Amphiphilic Polyurethanes as Coating Materials for Urinary Catheters (요도용 카테타 도포용 양친성 폴리우레탄의 합성 및 분석)

  • Park Jae-Hyung;Kim Kwang-Meyung;Chung Hes-Son;Kwon Ick-Chan;Bae You-Han;Jeong Seo-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.247-252
    • /
    • 2006
  • The long-term use of indwelling urinary catheters can allow bacterial adhesion to their surfaces, followed by the catheter-associated urinary tract infection. In an attempt to minimize the bacterial adhesion, various amphiphilic polyurethanes (APUs) were synthesized as potential coating materials for urinary catheters. By varying composition of the soft segments such as PEO, PTMO, and PDMS, four different polyurethanes were synthesized. All the APU-coated urinary catheters had the smooth surfaces and showed higher hydrophilicity, compared to the commercial silicone catheters. In particular, the use of APUs with the higher PEG content significantly augmented hydrophilicity and remarkably reduced the total amount of bacteria adhering to the surface. Overall, the APUs prepared in this study provided the promising potential as coating materials for urinary catheters.

Prevention of Protein Loss Using A Shield Coating According to Moisture Behavior in Human Hair (수분거동 패턴에 따른 차폐막 설정을 통한 모발단백질 소실방지)

  • Song, Sang-Hun;Lim, Byung Tack;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • To prevent loss of hair protein during hair washing process by water through, a shield coating the pathway of water molecules was studied. Hydrophobic virgin hair, hydrophilic hair, which was damaged only methyleicosanoic acid (18-MEA) on the surface, and a repaired hair re-bound 18-MEA, were prepared and water mass changes by as heat were measured. Results showed that hydrophobic hairs followed bi-exponential function of 39 s and 151 s and other two hairs exhibited fast- and mono-exponential decay with 83 s, reflecting the extraction of water molecules without any resistance at the hydrophobic surface. On the assumption that hydrophobic surface resists an extraction of protein in water during the wash, the protein concentrations were compared from the hair of hydrophobic and hydrophilic surface. The extracted hair proteins were 179 and 148 ㎍/mL from the hair coated with hydrophilic polyethylene glycol (PEG) and hydrophobic polydimethylsiloxane (PDMS), respectively. This study suggested that hydrophobic coating on the hair surface could be used to prevent protein loss in wash, represented by LFM. In conclusion, this research provides some useful information to contribute to the development of hair washing products that can prevent protein loss in the cleaning process by granting hydrophobic coatings.

Development of Composite Hollow Fiber Membranes for Olefin Off-gas Recovery (올레핀 배가스의 분리를 위한 중공사형 복합막의 개발)

  • Kim Jeong-Hoon;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 2005
  • In this study, composite hollow fiber membranes were developed for the recovery of olefin monomers in polyolefin industry off-gases. Polyetherimide (PEI) hollow fiber support membranes were fabricated from spinning solutions containing PEI, NMP and polyethylene glycol (PEG). The influence of dope solution and inner coagulant composition on the permeation properties and structure of hollow fiber supports was examined. PDMS was used as a selective layer and coated on PEI hollow fiber support. The thickness of active layer was controlled by changing coating solution concentration. The permeation properties of hollow fiber supports and composite membranes were characterized with a pure gas permeation test. The optimized composite hollow fiber membrane has $10\;{\mu}m$ selective layer and shows excellent separation performance; the ideal selectivity of olefins over nitrogen is in the following order: 1-butylene (6.4) > propylene (17) > ethylene (97), which selectivity data are similar to the intrinsic olefin/nitrogen selectivities of PDMS. This confirms that the new composite hollow fiber membranes suitable for olefin off-gas recovery has developed successfully.