• Title/Summary/Keyword: PEEK(Polyetheretherketone)

Search Result 26, Processing Time 0.029 seconds

Dielectric Relaxation Properties for following the Ageing of Polyetheretherketone (열화에 따른 Polyetheretherketone의 유전완화특성)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 2004
  • The dielectric properties of Y-ray irradiated and thermally aged polyetheretherketone (PEEK) have been investigated. Results of the temperature dependency of dielectric properties indicated that the glass transition temperature of aged PEEK increased as radiative and thermal ageing. The frequency dependency of dielectric properties implied that the magnitude of radiation and thermal induced dipoles, ions increased as radiative and thermal ageing. The values of relaxation intensity calculated using Cole-Cole's circular arc can be useful for evaluation of degradation level of PEEK.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut

  • Guleryuz, Aysegul;Korkmaz, Cumhur;Sener, Ayse;Tas, Mehmet Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.304-315
    • /
    • 2021
  • PURPOSE. Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue. MATERIALS AND METHODS. PEEK clasps (N = 48) with thicknesses of 1 or 1.50 mm and 48 premolar monolithic zirconia crowns with undercuts of 0.25 mm or 0.50 mm were fabricated. Samples are divided into four groups (C1-C4) and were subjected to 7200 thermal aging cycles (at 5 - 55℃). The changes in the retentive force and dimensions of the clasps were measured by micro-stress testing and micro-CT devices from five measurement points (M1 - M5). One-way ANOVA, paired t-test, two-way repeated ANOVA, and post-hoc tests were used to analyze the data (P < .05). RESULTS. The retentive forces of C1, C2, C3, and C4 groups in initial and final test were found to be 4.389-3.388 N, 4.67 - 3.396 N, 5.161 - 4.096 N, 5.459 - 4.141 N, respectively. The effects of retentive force of all PEEK clasps groups were significant decreased. Thermo-mechanical cycles caused significant dimensional changes at points with M2, M4, and M5, and abraded the clasp corners and increased the distance between the ends of the clasp, resulting in reduced retentive forces (P* = .016, P* = .042, P < .001, respectively). CONCLUSION. Thermo-mechanical aging decreases the retentive forces in PEEK clasps. Increasing the thickness and undercut amount of clasps decreases the amount of dimensional change. The values measured after aging are within the clinically acceptable limits.

Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis (티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.44 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

Effect of matrix on fatigue strength of carbon fiber composite materials (탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향)

  • 유승원
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

Evaluation of physical properties of polycarbonate temporary restoration materials (폴리카보네이트 임시수복재료의 물성 평가)

  • Kim, Gwang-Yun;Kwak, Young-Hun;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.168-175
    • /
    • 2020
  • Purpose: The purpose is to test and evaluate the physical properties of commonly used temporary restoration materials and newly emerged materials. Materials and Methods: Four groups of polymer materials were evaluated: Polymethyl methacrylate (PMMA) 2 groups, Polyetheretherketone (PEEK), Polycarbonate. Four physical properties were tested: surface hardness, bending strength, abrasion resistance during wear, wear behavior. The 3-axis bending strength and Vickers hardness test were measured using a universal testing machines respectively. The microstructure was observed with a scanning electron microscope and weight comparison was evaluated after 100,000 chewing tests using a chewing simulator. Kruskal wallis test was performed to evaluate statistical significance. Results: The four groups showed the highest flexural strength and Vickers hardness of PEEK, followed by PC, PMMA-H, PMMA-T. Microstructure observation also showed the least surface roughness in the PEEK group, followed by PC, PMMA-H, PMMA-T. Conclusion: PC is considered to have sufficient mechanical properties that can be applied to the manufacture of temporary teeth. However, further studies, such as biocompatibility, are considered to be necessary for practical clinical applications.

Polyetheretherketone Cage with Demineralized Bone Matrix Can Replace Iliac Crest Autografts for Anterior Cervical Discectomy and Fusion in Subaxial Cervical Spine Injuries

  • Kim, Soo-Han;Lee, Jung-Kil;Jang, Jae-Won;Park, Hyun-Woong;Hur, Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.211-219
    • /
    • 2017
  • Objective : This study aimed to compare the clinical and radiologic outcomes of patients with subaxial cervical injury who underwent anterior cervical discectomy and fusion (ACDF) with autologous iliac bone graft or polyetheretherketone (PEEK) cages using demineralized bone matrix (DBM). Methods : From January 2005 to December 2010, 70 patients who underwent one-level ACDF with plate fixation for post-traumatic subaxial cervical spinal injury in a single institution were retrospectively investigated. Autologous iliac crest grafts were used in 33 patients (Group I), whereas 37 patients underwent ACDF using a PEEK cage filled with DBM (Group II). Plain radiographs were used to assess bone fusion, interbody height (IBH), segmental angle (SA), overall cervical sagittal alignment (CSA, C2-7 angle), and development of adjacent segmental degeneration (ASD). Clinical outcome was assessed using a visual analog scale (VAS) for pain and Frankel grade. Results : The mean follow-up duration for patients in Group I and Group II was 28.9 and 25.4 months, respectively. All patients from both groups achieved solid fusion during the follow-up period. The IBH and SA of the fused segment and CSA in Group II were better maintained during the follow-up period. Nine patients in Group I and two patients in Group II developed radiologic ASD. There were no statistically significant differences in the VAS score and Frankel grade between the groups. Conclusion : This study showed that PEEK cage filled with DBM, and plate fixation is at least as safe and effective as ACDF using autograft, with good maintenance of cervical alignment. With advantages such as no donor site morbidity and no graft-related complications, PEEK cage filled with DBM, and plate fixation provide a promising surgical option for treating traumatic subaxial cervical spine injuries.

Preparation of CaO-SiO2-PEEK bio-composites and in-vitro Evaluation (CaO-SiO2-PEEK 생체복합체의 제조와 in-vitro 특성평가)

  • Kim Ill Yong;Cho Sung Baek;Kim Jong Ock;Shin Jong Woo;Lee Sung Ho;Park Joong Keun;Kim Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • A bio-composites were prepared by mechanical mixing with bioactive sol-gel derived $CaO-SiO_2$ and organic PEEK for bone repairing hybrid materials. The composites were characterized by in-vitro test. A bonelike apatite was formed on the surface of all bio-composites in SBF test. The cell morphology and adhesion on the surface of the composites having below 30% PEEK were clearly observed in L929 cell experiment.