• Title/Summary/Keyword: PEDAR SYSTEM

Search Result 23, Processing Time 0.017 seconds

Analysis of Plantar Foot Pressure according to Insole Types during Treadmill Gait (트레드밀 보행시 인솔 형태 변화에 따른 족저압력 분석)

  • Woo, Jung-Hwi;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Bae, Kang-Ho;Han, Dong-Wook;Park, Sang-Muk;Bae, Jin-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.113-122
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the foot-pressure distribution of 2D(2 dimensional form) & 3D(3 dimensional form; a customized arch-fit for posture correction) insoles for assessing their biomechanical functionality. Background : Recently there has been increased interest in both foot health and foot pain patients. Analysis of the plantar pressure was often used to solve the problems of the foot displayed by such people as rheumatoid arthritis patients. Method : Subjects who participated in this study were 17 female university students who had no previous injury experience in lower limbs and a normal gait pattern. The shoe size of all subjects was 240 mm. Two models of insoles of 2D(typical flat insole - 2 dimensional form) and 3D(special production - 3 dimensional form) were selected for the test. Using the Pedar-X system and Pedar-X insoles, 4.0 km/h of walking speed, and a compilation of 50 steps walking stages were used to analyze foot-pressure distribution. Results : Results of the foot-pressure distribution and biomechanical functionality on each insole were as follows; analyses of mean plantar pressure, maximum plantar pressure, maximum vertical GRF, and plantar pressure curve shape all showed overall low plantar pressure and GRF. Conclusion : This can be evaluated as an excellent insole for low levels on the plantar pressure and GRF. Therefore, it is possible to conclude that according to this analysis the 3D Customized Arch-fit Insole was better than 2D insole on the basis of these criteria.

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.

Functional Evaluation of Tennis Shoes Using Foot-Pressure Distribution (족저압력분석을 활용한 테니스화 기능성평가)

  • Park, Seung-Bum;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.89-97
    • /
    • 2008
  • The purpose of this study was to analyze the foot-pressure distribution of Tennis Shoes for assessing their functionality. 10 university male students (shoe size: 265mm) who had no history of injury in the lower extremity and a normal gait pattern participated in this study. Four types of tennis shoes, most popular in Korea (A, B, C & D company), were selected and tested. Using the PEDAR-X system and PEDAR-X insoles, 4 different motion stages were analyzed for the foot-pressure distribution: (a) straight running; (b) c-cut($45^{\circ}$ left turn running; (c) forehand stroke; and (d) backhand stroke. Results revealed that in all stages, there were no statistically significant differences among the types of shoes; however, descriptive statistics indicated that functionality of shoe types was somewhat different depending on the type of stages. The order in functionality found was C>A>B>D.

The Comparison of Plantar Foot Pressure Distribution in Adult and Elderly according Obstacle Heights (장애물 높이에 따른 성인과 노인의 족저압 분포 비교)

  • Chang, Jong-Sung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.4
    • /
    • pp.257-261
    • /
    • 2014
  • Purpose: The purpose of this study was to compare plantar foot pressure distribution in adults and elderly according to obstacle height. Methods: Nine healthy adults and nine older adults were recruited and the subjects provided written informed consent consent prior to participation. Both groups walked and crossed obstacles with heights of 0%, 10%, 20%, and 30% of their height. Foot pressure was measured by peak pressure using the Pedar System (Novel Gmbh, Germany) during obstacle walking with barefeet in shoes. Three trails were calculated on eight areas and then averaged for data analysis. Results: A significant difference in great toe, little toes, and lateral metatarsal area was observed between adults and elderly groups, but other areas did not show significant differences. Foot pressure was increased in groups according to obstacle height. Conclusion: These findings showed that change in foot pressure distribution is more lateral in elderly in order to maintain postural control during obstacle crossing.

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

Analyses of GRF & Insole Foot-Pressure Distribution: Gait Patterns and Types of Trekking Boots (등산화의 종류와 보행동작에 따른 지면반력 및 족저압력 분석)

  • Park, Seung-Bum;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.191-200
    • /
    • 2007
  • The purpose of this study was to analyze the foot-pressure distribution of trekking boots for assessing their functionality. Subjects participated in this study included 10 university male students who had no injury experience in lower limbs and a normal gait pattern. The size of all subjects was 270mm. Five models of trekking boots, most popular in Korea (A, B, C, D & E company), were selected for the test. Using the PEDAR-X system and PEDAR-X insoles, 5 different walking stages were analyzed for the foot-pressure distribution: (a) straight gait; (b) $45^{\circ}$ turn gait; (c) $25^{\circ}$ uphill gait; and (d) $25^{\circ}$ downhill gait. Results of the foot-pressure distribution and functionality on each stage were as follow; 1. Straight gait - In case of Max ground reaction force, mean plantar pressure and Max plantar pressure, there was not a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. 2. $45^{\circ}$ turn gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and A company were superior to those by other companies in terms of functionality. 3. $25^{\circ}$ uphill gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and C company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and C company were superior to those by other companies in terms of functionality. 4. $25^{\circ}$ downhill gait - In Max ground reaction force, Mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E company were superior to those by other companies in terms of functionality. Overall, five pairs of trekking shoes selected in this study showed the excellent performance in several conditions. The findings above may provide us with the important criteria for choosing trekking boots.

Analyses of Plantar Foot Pressure and Static Balance According to the Type of Insole in the Elderly

  • Bae, Kang-Ho;Shin, Jin-Hyung;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.115-126
    • /
    • 2016
  • Objective: The purpose of this study was to investigate plantar foot pressure and static balance according to the type of insole in the elderly. Methods: Thirteen elderly (mean age: $67.08{\pm}2.25years$, mean height: $159.63{\pm}9.64cm$, mean body weight: $61.48{\pm}9.06kg$) who had no previous injury experience in the lower limbs and a normal gait pattern participated in this study. Three models of insoles of the normal, 3D, and triangle types were selected for the test. The Pedar-X system and Pedar-X insoles, 3.3 km/h of walking speed, and a compilation of 20 steps walking stages were used to analyze foot-pressure distribution. Static balance test was conducted using Gaitview AFA-50, and balance (opening eyes, closing eyes) was inspected for 20 s. One-way ANOVA was conducted to test the significance of the results with the three insoles. p-value of less than .05 was considered statistically significant. Results: The mean foot pressure under the forefoot regions was the lowest with the 3D insole during treadmill walking (p<.05). The mean value under the midfoot was the highest with the 3D insole (left: p<.05, right: p<.01). The mean value under the rearfoot was the lowest with the 3D insole (p<.001). The maximum foot pressure value under the foot regions was the lowest on both sides of the forefoot with the 3D insole. A statistically significant difference was seen only in the left foot (p<.01). The maximum value under the midfoot was the highest with the 3D insole (p<.001). No statistically significant difference was detected on the values under the rearfoot. In the case of vertical ground reaction force (GRF), statistically significant difference was seen only in the left side rearfoot (p<.01). However, static balance values (ENV, REC, RMS, Total Length, Sway velocity, and Length/ENV) did not show significant differences by the type of insole. Conclusion: These results show that functional insoles can decrease plantar pressure and GRF under the forefoot and rearfoot. Moreover, functional insoles can dislodge the overload of the rearfoot and forefoot to the midfoot. However, functional insoles do not affect the static balance in the elderly.

The Effect of Changes in Foot Cutaneous Sensation on Plantar Pressure Distribution during Gait (발바닥의 피부 감각 변화가 보행 중에 족저압 분포에 미치는 영향)

  • Seong, Dae-Young;Kim, Joong-Hwi;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.5
    • /
    • pp.306-312
    • /
    • 2012
  • Purpose: The purpose of this study was to examine the effect of changes in foot cutaneous sensation on plantar pressure distribution during gait. Methods: Sixteen healthy young subjects participated in this experiment. All subjects performed two trials of walking under three somatosensory conditions induced by a normal facilitatory insole that provides increased plantar sensory stimulation, and application of lidocaine cream to the plantar surface of the foot to reduce the sensitivity of the soles. Semmes-Weinstein monofilaments were used for evaluation of reduced plantar sensation. The Pedar system was used for measurement of pressure distribution at the plantar surface of the foot. Results: Pressure in the lateral midfoot area showed an increase with increasing and decreasing sensory inputs. When sensory input was increased, plantar pressure showed a decrease in the forefoot area. When sensory input was decreased, plantar pressure showed an increase in the lateral forefoot area and a decrease in the hallux area. Conclusion: By altering sensory feedback, plantar pressure distribution is changed during gait. Plantar cutaneous afferents play an important role in plantar distribution.

Change of Plantar Pressure Distribution of Open Stance during Forehand Stroke in Tennis (테니스 포핸드 스트로크 시 오픈스탠스의 족저압력분포의 변화)

  • Choi, Ji-Young;Kim, Seung-Jae;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.143-153
    • /
    • 2005
  • J.Y. CHOI,S. J. KIM, E. L. LEE. Change of plantar pressure Distribution of Open Stance during Forehand Strke in Tennis. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, PP. 143-153, 2005. Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and close stance and it is very important to know the patterns of plantar pressure distribution for the better understanding of forehand stroke. Therefore, the purpose of this study was to investigate the change of plantar pressure distribution in open stance during forehand stroke in tennis. Three high school tennis players were recruited for the study and required to perform forehand stroke five consecutive trials in the condition of open stance. The forehand strokes were filmed with two digital video cameras and measured with pedar system for plantar pressure. The plantar regions under the foot were divided into 3 regions, which were forefoot, midfoot, and rear foot. In conclusion, The plantar pressure of open stance during forehand stroke was distributed more largely to the right foot. The plantar pressure of open stance during forehand stroke was distributed more weight loads on forefoot of right than heel of right

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.