• Title/Summary/Keyword: PECVD $SiO_2$

Search Result 226, Processing Time 0.032 seconds

Effects of $N_2O$/$SiH_4$Flow Ratio and RF Power on Properties of $SiO_2$Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 $SiO_2$후막 특성에서 $N_2O$/$SiH_4$Flow Ratio와 RF Power가 미치는 영향)

  • 조성민;김용탁;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1037-1041
    • /
    • 2001
  • Silicon diosixde thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, at a low temperature (32$0^{\circ}C$) and from (SiH$_4$+$N_2$O) gas mixtures. The effects of deposition parameters on properties of SiO$_2$thick films were investigated by variation of $N_2$O/SiH$_4$flow ratio and RF power. As the $N_2$O/SiH$_4$flow ratio decreased, deposition rate increased from 2.9${\mu}{\textrm}{m}$/h to maximum 10.1${\mu}{\textrm}{m}$/h. As the RF power increased from 60 W to 120 W, deposition rate increased (5.2~6.7 ${\mu}{\textrm}{m}$/h) and refractive index approached at thermally grown silicon dioxide (n=1.46).

  • PDF

Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells (결정질 실리콘 태양전지 응용을 위한 SiNx 및 SiO2 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • We have investigated the passivation property of $SiN_x$ and $SiO_2$ thin films formed using various process conditions for the application of crystalline Si solar cells. An increase in the thickness of $SiN_x$ deposited using plasma enhanced chemical vapor deposition (PECVD) led to the improvement of passivation quality. This could be associated with the passivation of Si dangling bonds by hydrogen atoms which were supplied during PECVD deposition. The $SiO_2$ thin films grown using dry oxidation process exhibited better passivation behavior than those using wet oxidation process, implying the dry oxidation process was more effective in the formation of high quality $SiO_2$ thin films. The relative effective life time gradually decreased with increasing dry oxidation temperature. Such a degradation of passivation behavior could be attributed to the increase in interface trap density caused by thermal damages.

The Study on the Non-Uniformity of PECVD SiO2 Deposition by the Plasma Diagnostics (플라즈마 진단에 의한 PECVD SiO2 증착의 불균일성 원인 연구)

  • Ham, Yong-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • The cause of the thickness non-uniformity in the large area deposition of $SiO_2$ films by PECVD(Plasma Enhanced Chemical Vapor Deposition) was investigated by the plasma diagnostics. The spatial distribution of the plasma species in the chamber was obtained with DLP(Double Langmuir Probe) and the new-designed probe-type QMS(Quadrupole Mass Spectrometer). From the relationship between the spatial distribution of the plasma species and the depositing rate of the $SiO_2$ films, it was conformed that the non-uniform deposition of $SiO_2$ films was related with the spatial distribution of the oxygen radical density and electron temperature.

Characteristic and moisture permeability of SiOxCy thin film synthesized by Atmospheric pressure-plasma enhanced chemical vapor deposition

  • Oh, Seung-Chun;Kim, Sang-Sik;Shin, Jung-Uk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.171-171
    • /
    • 2011
  • Atmospheric pressure- plasma enhanced chemical vapor deposition(AP-PECVD)Processes are recognized as promising and cost effective methods for wide-area coating on sheets of steel, glass, polymeric web, etc. In this study, $SiO_xC_y$ thin films were deposited by using AP-PECVD with a dielectric barrier discharge(DBD). The characteristic of $SiO_xC_y$ thin films were investigated as afunction of the HMDSO/O2/He flow rate. And the moisture permeability of $SiO_xC_y$ thin films was studied. The $SiO_xC_y$ thin films were characterized by the Fourier-transformed Infrared(FT-IR) spectroscopy and also investigated by X-ray photo electron spectroscopy(XPS), Auger Electron Spectroscopy(AES). The moisture permeability of $SiO_xC_y$ thin films was investigated by $H_2O$ permeability tester Detailed experimental results will be demonstrated through th present work.

  • PDF

The study on the $SiO_2$ film non-uniformity by Plasma Enhanced Chemical Vapor Deposition (PECVD로 증착된 $SiO_2$의 non-uniformity 특성 연구)

  • Ham, Yong-Hyun;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.73-73
    • /
    • 2008
  • In this work, the study on the $SiO_2$ film non-uniformity by PECVD (Plasma Enhanced Chemical Vapor Deposition) was performed. Plasma diagnostics was analyzed by a DLP(Double Langmuir Probe) and a probe-type QMS(Quadrupole Mass Spectrometer) in order to investigate the spatial distribution of the plasma species in the chamber. The relationship between the plasma species and the depositing rate of the films was examined. On the basis of this work, it was confirmed that O radical density mainly contributed to the increase in the depositing rate of the $SiO_2$ films and the electron temperature in the plasma had a main effect on the formation of the oxygen radicals.

  • PDF

Electrical properties of $SiO_2$/InSb prepared by low temperature remote PECVD (Remote PECVD로 저온성장된 $SiO_2$/InSb의 전기적 특성)

  • 이재곤;박상준;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 1996
  • $SiO_2$ insulator layers on InSb have been prepared by remote PECVD system a low temperature below $200^{\circ}C$. The effects of deposition pressure, temperature, and gas flow ratio on the physical and electrical characteristics of the $SiO_2$ were studied. The InSb MIS device using $SiO_2$ was fabricated and measured its current-voltage and capacitance-voltage characteritance-voltage charateristics at 77K. The films evaluated Auger electron spectroscopy showed that composition atoms were distributed uniformaly throughout the oxide film and the outdiffusion of substrate atoms into the oxide were few. The leakage current density of the MIS device was about 6.26nA/$\textrm{cm}^2$ at 0.75MV/cm , and the breakdown voltage was about 1MV/cm. The interface-stage density at mid-bandgap extracted from 1MHz C-V measurement was $54\times 10^{11}\textrm{cm}^2-2V^{-1}$.

  • PDF

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

PECVD를 통해 향상된 SiN/SiO2/ITO 다층박막의 무반사 효과에 대한 연구

  • Choe, Min-Jun;Gwon, Se-Ra;Song, Ae-Ran;Jeong, Gwon-Beom;An, Gyeong-Jun;Baek, Ju-Yeol;Kim, Bu-Gyeong;Jang, Hyeok-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.274-274
    • /
    • 2016
  • 터치스크린패널로 응용하기 위하여 80%이상의 높은 투과도와 낮은 저항이 요구된다. 그 중에서도 무반사 효과 (anti-reflective, AR) 를 크게하여 투과도를 향상시키는 방법으로 나노구조물, 증착시 경사각, 다층박막 방법 등이 연구 개발되고 있다. 단일 박막을 이용하여 무반사 코팅을 하는 경우, 정밀한 굴절률 조절이 어려우며 낮은 반사율 영역의 선폭이 좁은 단점이 있다. 반면, 저/고굴절률 다층박막의 경우 비교적 굴절률 조절이 용이하고 가시광영역 전반적으로 높은 투과도를 가질 수 있다. plasma enhanced chemical vapor deposition (PECVD) 증착법을 이용하여 무반사 효과를 증대시키기 위해 저/고굴절률 다층구조의 박막을 두께조합에 따라 평가하였으며, 가장 널리 사용되고 있는 Sputtering증착법과 비교하여 연구하였다. 제작된 다층박막의 구조는 glass(sub.)/SiN/SiO2/ITO 이며, 무반사 코팅층인 SiN/SiO2층은 각각 PECVD와 Sputtering 증착법을 통해 성장되었고, ITO는 스퍼터링 증착법을 이용하여 동일하게 성장하였다. 그 결과 PECVD 증착법이 Sputtering 증착법에 비하여 가시광영역(400~800nm)에서 더 높은 투과도를 얻게 되었다. 결과의 차이에 대해서 PECVD 증착법과 Sputtering 증착법으로 성장된 SiN, SiO2 박막의 광학적 특성과 물리적 특성의 변화를 spectroscopic ellipsometry (SE), Rutherford backscattering (RBS), atomic force microscopy (AFM) 을 이용하여 비교, 분석하였다.

  • PDF

The Effect of RF Power and $SiH_4$/($N_2$O+$N_2$) Ratio in Properties of SiON Thick Film for Silica Optical Waveguide (실리카 광도파로용 SiON 후막 특성에서 RF Power와 $SiH_4$/($N_2$O+$N_2$) Ratio가 미치는 영향)

  • 김용탁;조성민;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1150-1154
    • /
    • 2001
  • Silicon oxynitride (SiON) thick films using the core layer of silica optical waveguide have been deposited on Si wafer by PECVD at low temperature (32$0^{\circ}C$) were obtained by decomposition of appropriate mixture of (SiH$_4$+$N_2$O+$N_2$) gaseous mixtures under RF power and SiH$_4$/($N_2$O+$N_2$) ratio deposition condition. Prism coupler measurements show that the refractive indices of SiON layers range from 1.4663 to 1.5496. A high SiH$_4$/($N_2$O+$N_2$) of 0.33 and deposition power of 150 W leads to deposition rates of up to 8.67 ${\mu}{\textrm}{m}$/h. With decreasing SiH$_4$/($N_2$O+$N_2$) ratio, the SiON layer become smooth from 41$\AA$ to 6$\AA$.

  • PDF