• Title/Summary/Keyword: PEBAX

Search Result 36, Processing Time 0.021 seconds

PEBAX-2533/Ag Salt/Al(NO3)3 Composite Using AgCF3SO3 for Facilitated Olefin Transport Membrane (올레핀 촉진수송 분리막용 AgCF3SO3를 활용한 PEBAX-2533/Ag Salt/Al(NO3)3 복합체)

  • Kim, Soyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • This study was a study on an facilitated transport membrane to replace the cryogenic separation method currently used in olefin/paraffin separation. Cost reduction is also a very important factor to commercialize facilitated transport membranes. However, AgBF4, which has been studied a lot, is a relatively expensive silver salt. To replace this, a PEBAX-2533/ AgCF3SO3/Al(NO3)3 composite film was prepared using relatively inexpensive AgCF3SO3. It was analyzed through SEM, FT-IR, and RAMAN. Through this study, it was confirmed that the polymer matrix affects the long-term stability.

Gas Separation Study of PEBAX 3533 and PEG Blended Membranes (PEBAX 3533과 PEG의 혼합막에 대한 기체투과 연구)

  • Kim, Kwang Bae;Cho, Eun Hye;Cheong, Seong Ihl;Lee, Hyung Keun;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • In order to increase the permeabilities of $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$, Poly (ether block amides) (PEBAX) 3533 and its blended membranes with Poly (ethylene glycol) (PEG) of molecular weight 400 were prepared. The contents of PEG400 were 20%, 40%, and 50% and this membranes were characterized in terms of permeability for $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$ gases and also diffusivity and solubility as well by using the time-lag gas separation apparatus. As expected, the permeabilities incerased as the contents of PEG400 increased. For the ideal selectivity, there is no big difference in values of between PEBAX 3533 and PEBAX/PEG400 membranes. The increase of permeabilities is due to the increases of solubilities of gases in question and this will be explained in more detail.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Study of the Inhibition on the Combustion of PEBAX/AP Thermoplastic Propellant (PEBAX/AP 열가소성 고체추진제의 연소 억제 방안 연구)

  • Lee, Hyoungjin;Jung, Haeyoung;Cho, Junhyun;Lee, Youngguen;Lee, Hojin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.18-26
    • /
    • 2013
  • This study suggested techniques to reduce burning rate and their effects for the AP thermoplastic composite propellant. Burning rate obtained through ground tests using a small size motor were analyzed to investigate the effects of AP particle size and LiF of 0.5~2.0% on the inhibition reaction for the PEBAX/AP thermoplastic propellant. The results showed that utilization of large size particle of AP and addition of LiF under 2.0% can reduce the burning rate sufficiently and their quantitative effects were suggested in this paper.

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation (열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가)

  • Im, Kwang Seop;Lee, Jeong Woo;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.362-376
    • /
    • 2019
  • In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.

Gas Permeation Characteristics of Membrane Using Poly(ether-b-amide)/ZIF-7 (Poly(ether-b-amide)/ZIF-7을 이용한 막의 기체투과 특성)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.200-211
    • /
    • 2021
  • In this study, mixed matrix membranes were prepared by mixing the synthesized zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide) 2533 (PEBAX2533). A single gas (N2, CO2) was permeated through the membrane to investigate the properties of the gas. Through FT-IR, XRD, and FE-SEM, the peaks and shapes of ZIF-7 were confirmed, and it was determined that the synthesis was successful. Through TGA, it was confirmed that ZIF-7 has excellent thermal stability and that when incorporated into the membrane, the thermal stability is improved compared to pure PEBAX2533. It was found that ZIF-7 synthesized through BET had excellent CO2 adsorption capacity and CO2/N2 adsorption selectivity showed a high value of about 49.64. For the gas permeation, as the ZIF-7 content in the mixed membrane increases, the N2 permeability decreases and the CO2 permeability slightly decreases, while the CO2/N2 selectivity steadily increases. In particular, when 20 wt% of ZIF-7 was added, the CO2 permeability did not decrease significantly and the CO2/N2 selectivity increased considerably, resulting in the performance approaching to the Robeson upper-bound.

Preparation and Characterization of ClO2 Self-Releasing Smart Sachet (이산화염소 자체 방출 스마트 샤쉐의 제조 및 특성 연구)

  • Junseok Lee;Hojun Shin;Sadeghi Kambiz;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Chlorine dioxide (ClO2) is widely used for post-harvest sterilization treatment. However, there are limitations in the retail application of ClO2 due to difficulties in handling, expensive facilities, and safety concerns. Therefore, it is necessary to develop a ClO2 technology that can be easily applied and continuously released for a long period. In this study, a series of ClO2 self-releasing sachets were developed. First, poly(ether-block-amide) (PEBAX) and polyethylene-glycol (PEG) composite films containing different ratios of citric acid (CA) were prepared using the solution casting method. The as-prepared PEBAX/PEG-CA composite films were evaluated using FT-IR, DSC, and TGA to confirm chemical structure and thermal properties. Subsequently, PEBAX/PEG-CA composite films were designed in the form of a sachet and NaClO2 powder was transferred into the sachet to achieve a ClO2 self-releasing system. The ClO2-releasing behavior of the sachet was investigated by measuring the release amount of the gas using UV-vis. The release amount of ClO2 increased with increasing CA contents owing to the existence of higher protons (trigger) in the polymer matrix. Further, ClO2 gas was released for a longer time. Therefore, the as-prepared smart sachet can be tuned according to applications and packaging sizes to serve an optimal sterilization effect.