DOI QR코드

DOI QR Code

Gas Permeation Characteristics of Membrane Using Poly(ether-b-amide)/ZIF-7

Poly(ether-b-amide)/ZIF-7을 이용한 막의 기체투과 특성

  • Yoon, Soong Seok (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 윤숭석 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2021.05.03
  • Accepted : 2021.05.24
  • Published : 2021.06.30

Abstract

In this study, mixed matrix membranes were prepared by mixing the synthesized zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide) 2533 (PEBAX2533). A single gas (N2, CO2) was permeated through the membrane to investigate the properties of the gas. Through FT-IR, XRD, and FE-SEM, the peaks and shapes of ZIF-7 were confirmed, and it was determined that the synthesis was successful. Through TGA, it was confirmed that ZIF-7 has excellent thermal stability and that when incorporated into the membrane, the thermal stability is improved compared to pure PEBAX2533. It was found that ZIF-7 synthesized through BET had excellent CO2 adsorption capacity and CO2/N2 adsorption selectivity showed a high value of about 49.64. For the gas permeation, as the ZIF-7 content in the mixed membrane increases, the N2 permeability decreases and the CO2 permeability slightly decreases, while the CO2/N2 selectivity steadily increases. In particular, when 20 wt% of ZIF-7 was added, the CO2 permeability did not decrease significantly and the CO2/N2 selectivity increased considerably, resulting in the performance approaching to the Robeson upper-bound.

본 연구는 합성된 zeolitic imidazolate framework-7 (ZIF-7)을 poly(ether-b-amide) 2533 (PEBAX2533)에 혼합하여 혼합막을 제조하고, 단일기체(N2, CO2)를 투과하여 기체에 대한 성질을 조사하였다. FT-IR, XRD, FE-SEM을 통해 ZIF-7이 가지는 피크와 형상을 확인하였고, 합성이 잘 되었음을 판단하였다. TGA를 통해 ZIF-7이 우수한 열적 안정성을 가지는 것과 막 내에 혼입되었을 때 순수 PEBAX2533에 비해 열적 안정성이 향상되는 것을 확인하였다. BET를 통해 합성된 ZIF-7의 CO2 흡착 능력이 우수하고 CO2/N2 흡착 선택도가 약 49.64로 높은 편이라는 것을 확인하였다. 기체 투과는 혼합막에서 ZIF-7 함량이 증가함에 따라 N2 투과도는 감소하고 CO2 투과도는 비교적 적게 감소하면서 CO2/N2 선택도는 꾸준히 증가하는 모습을 보였다. 특히 ZIF-7 20 wt%이 첨가되었을 때 CO2 투과도가 크게 감소하지 않고 선택도가 상당히 증가하여 Robeson upper-bound에 근접하는 결과를 얻었다.

Keywords

Acknowledgement

이 논문은 상명대학교 2020년도 교내연구비 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  2. S. Wang, J. Wang, C. Fang, and S. Li, "Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta, China", Cities, 85, 117 (2019). https://doi.org/10.1016/j.cities.2018.08.009
  3. J. Ahmad, W. U. Rehman, K. Deshmukh, S. K. Basha, B. Ahamed, and K. Chidambaram, "Recent advances in poly (amide-b-ethylene) based membranes for carbon dioxide (CO2) capture: A review", Polym. Plast. Techno. Eng., 58, 366 (2019).
  4. Z. Dai, L. Ansaloni, and L. Deng, "Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review", Green Energy Environ., 1, 102 (2016). https://doi.org/10.1016/j.gee.2016.08.001
  5. D. S. Sholl and R. P. Lively, "Seven chemical separations to change the world", Nature, 532, 435 (2016). https://doi.org/10.1038/532435a
  6. J. E. Shin, S. H. Han, S. Y. Ha, and H. B. Park, "The state of the art of membrane technologies for carbon dioxide separation", KIC News, 21, 2 (2018).
  7. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  8. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356, eaab0530 (2017). https://doi.org/10.1126/science.aab0530
  9. M. He, J. Yao, L. Li, K. Wang, F. Chen, and H. Wang, "Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition", ChemPlusChem, 78, 1222 (2013). https://doi.org/10.1002/cplu.201300193
  10. M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, "Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review", Membranes, 8, 50 (2018). https://doi.org/10.3390/membranes8030050
  11. M. N. Shahrak, M. N. Shahrak, A. Shahsavand, N. Khazeni, X. Wu, and S. Deng, "Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption", Chin. J. Chem. Eng., 25, 595 (2017). https://doi.org/10.1016/j.cjche.2016.10.012
  12. P. Zhao, G. I. Lampronti, G. O. Lloyd, E. Suard, and S. A. Redfern, "Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7", J. Mater. Chem. A, 2, 620 (2014). https://doi.org/10.1039/C3TA13981F
  13. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", PNAS, 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  14. W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi, "Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review", J. Appl. Polym. Sci., 137, 48968 (2020). https://doi.org/10.1002/app.48968
  15. A. Noguera-Diaz, J. Villarroel-Rocha, V. P. Ting, N. Bimbo, K. Sapagb, and T. J. Maysa, "Flexible ZIFs: Probing guest-induced flexibility with CO2, N2 and Ar adsorption", J. Chem. Technol. Biotechnol., 94, 3787 (2019). https://doi.org/10.1002/jctb.5947
  16. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'keeffe, and O. M. Yaghi, "Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks", Acc. Chem. Res., 43, 58 (2009). https://doi.org/10.1021/ar900116g
  17. P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, and S. A. Redfern, "Phase transitions in zeolitic imidazolate framework 7: The importance of framework flexibility and guest-induced instability", Chem. Mater., 26, 1767 (2014). https://doi.org/10.1021/cm500407f
  18. A. Arami-Niya, G. Birkett, Z. Zhu, and T. E. Rufford, "Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2", J. Mater. Chem. A, 5, 21389 (2017). https://doi.org/10.1039/C7TA03755D
  19. T. Li, Y. Pan, K. Peinemann, and Z. Lai, "Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers", J. Membr. Sci., 425, 235 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  20. T. Chakrabarty, P. Neelakannda, and K. Peinemann, "CO2 selective, Zeolitic imidazolate framework-7 based polymer composite mixed-matrix membranes", J. Mater. Sci. Res., 7, 1 (2018).
  21. R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  22. V. Nafisi and M. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  23. N. Azizi and M. R. Hojjati, "Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4", Petrol. Sci. Technol., 36, 993 (2018). https://doi.org/10.1080/10916466.2018.1458120
  24. L. Liu, A. Chakma, and X. Feng, "CO2/N2 separation by poly (ether block amide) thin film hollow fiber composite membranes", Ind. Eng. Chem. Res., 44, 6874 (2005). https://doi.org/10.1021/ie050306k
  25. A. Khoshkharam, N. Azizi, R. M. Behbahani, and M. A. Ghayyem, "Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane", Petrol. Sci. Technol., 35, 667 (2017). https://doi.org/10.1080/10916466.2016.1273242
  26. R. Selyanchyn, M. Ariyoshi, and S. Fujikawa, "Thickness effect on CO2/N2 separation in double layer pebax-1657®/PDMS membranes", Membranes, 8, 121 (2018). https://doi.org/10.3390/membranes8040121
  27. J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Microporous Mesoporous Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
  28. B. A. Al-Maythalony, A. M. Alloush, M. Faizan, H. Dafallah, M. A. Elgzoly, A. A. Seliman, A. Al-Ahmed, Z. H. Yamani, M. A. Habib, and K. E. Cordova, "Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes", ACS Appl. Mater. Interfaces, 9, 33401 (2017). https://doi.org/10.1021/acsami.6b15803
  29. C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, "Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique", Membr. J., 9, 141 (1999).
  30. M. Ebrahimi and M. Mansournia, "Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals", Mater. Lett., 189, 243 (2017). https://doi.org/10.1016/j.matlet.2016.12.025
  31. A. Ebrahimi and M. Mansournia, "Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst", Chem. Phys., 511, 33 (2018). https://doi.org/10.1016/j.chemphys.2018.06.003
  32. X. Wu, M. N. Shahrak, B. Yuan, and S. Deng, "Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation", Microporous Mesoporous Mater., 190, 189 (2014). https://doi.org/10.1016/j.micromeso.2014.02.016
  33. J. Deng, Z. Dai, and L. Deng, "Effects of the morphology of the ZIF on the CO2 separation performance of MMMs", Ind. Eng. Chem. Res., 59, 14458 (2020). https://doi.org/10.1021/acs.iecr.0c01946
  34. K. Knozowska, G. Li, W. Kujawski, and J. Kujawa, "Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation", J. Membr. Sci., 599, 117814 (2020). https://doi.org/10.1016/j.memsci.2020.117814
  35. W. Cai, T. Lee, M. Lee, W. Cho, D. Han, N. Choi, A. C. Yip, and J. Choi, "Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7)", J. Am. Chem. Soc., 136, 7961 (2014). https://doi.org/10.1021/ja5016298
  36. K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, "Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture", J. Membr. Sci., 572, 38 (2019). https://doi.org/10.1016/j.memsci.2018.10.049
  37. L. Xiang, L. Sheng, C. Wang, L. Zhang, Y. Pan, and Y. Li, "Amino-functionalized ZIF-7 nanocrystals: Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation", Adv. Mater., 29, 1606999 (2017). https://doi.org/10.1002/adma.201606999
  38. X. Wang, J. Chen, M. Fang, T. Wang, L. Yu, and J. Li, "ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution", Sep. Purif. Technol., 163, 39 (2016). https://doi.org/10.1016/j.seppur.2016.02.040
  39. D. Zhao, J. Ren, Y. Wang, Y. Qiu, H. Li, K. Hua, X. Li, J. Ji, and M. Deng, "High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes", J. Membr. Sci., 521, 104 (2017). https://doi.org/10.1016/j.memsci.2016.08.061
  40. L. Zhang, Z. Hu, and J. Jiang, "Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study", J. Phys. Chem. C, 116, 19268 (2012). https://doi.org/10.1021/jp3067124
  41. J. Kim, T. Park, and E. Chung, "Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes", J. Membr. Sci. Res., 7, 74 (2021).
  42. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030