• Title/Summary/Keyword: PE pipe

Search Result 69, Processing Time 0.04 seconds

Corrosion and Abrasion Characteristics of PE Sheet Laminated Corrugated Steel Pipe (PE 선피복 파형강관의 부식 및 마모 특성)

  • Kim, Seog-ku;Jeong, Jang-sik;Kwak, Phill-jae;Choi, Jun-hyang;Lee, Hyun-dong;Lee, Tae-yoon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2004
  • Feasibility of using PE sheet laminated CSP(Corrugated steel pipe) to sewers were tested via corrosion and abrasion tests for PE sheet laminated CSP; 1) corrosion test for PE film and PE coated plate, 2) corrosion test for joint of PE sheet laminated CSP, 3) corrosion test for outside of PE sheet laminated CSP, and 4) abrasion test for inside of PE sheet laminated CSP. The results for the corrosion and abrasion tests are as follows. 1. Results for corrosion tests on PE films and zinc coated steel plates that were coated with PE films show that the surfaces of both PE were not changed compared to those of original PE samples. Furthermore, PE films maintained strong adhesion on the steel plates even though they were exposed to sewage and seawater provided cutting planes of the steel plates were treated with molding. But, results for corrosion tests on the spots that were previously cut off by a knife and a cutting planes of the steel plates were treated without molding show that steel plates have been corroded if they were exposed to sewage and seawater. 2. Results for corrosion tests on joints of PE sheet laminated corrugated steel using sewage show that gathering rust was observed at cutting plane of PE sheet laminated corrugated steel after 180 days, but PE film was not flaked off. However, PE film at cutting plane was flaked off when PE sheet laminated corrugated steel was exposed to seawater. Furthermore, flaking process was severely progressed at lockseam points of which the surfaces were not smooth. 3. Results for laying PE sheet laminated corrugated steel under the ground show that the surface of untouched PE film was almost identical to that of original PE film. However, the spots that were previously cut off by a knife and a cutting plane of PE sheet laminated corrugated steel have flaked off. 4. As a result of abrasion tests conducted with PE sheet laminated corrugated steel and sand, brilliance and thickness of PE was not greatly changed under the severe abrasion conditions. Therefore, the durability of PE sheet laminated corrugated steel for abrasion was determined to be good.

A Study on Flange Coupling Design of Polyethylene Corrugated Steel Pipe (PE 피복형 파형강관의 플랜지 이음부 설계에 관한 연구)

  • Kim, Tae-Kyu;Lee, Ho-Young;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.403-408
    • /
    • 2007
  • The concrete pipe(Hume, PC) and polyethylene(PE) pipe are usually used for dram pipe in local market. Hume pipe, however, is heavy and needs the high cost of construction and PC pipe has a disadvantage to easily occur the deformation by the outside pressure even though it is light and constructible. The corrugated steel pipe coated with polyethylene is used increasedly because it is durable, constructible and economical. However, it is not used for sewage or waste water because it is hard to guarantee the watertight property on the coupling part. In this study, we studied on the flange coupling and the method of its construction to guarantee the watertight property and easy to use. If the developed flange coupling and method are used on a construction field, the economical property, constructible property and structural safety can be guaranteed.

Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger (금속재질 열교환기의 지중 열교환 효율에 관한 연구)

  • Song, Jae-Yong;Kim, Ki-Joon;An, Sang-Gon;Kim, Jin-Sung;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.131-148
    • /
    • 2015
  • The purpose of this study is to analyze and compare the heat transfer efficiency of using copper pipe, stainless pipe and traditional PE pipe commonly used for geothermal heat exchanger, with aims at seeking improved methods. In addition, the varying efficiency of heat transfer from ground heat and groundwater heat was assessed and its applicability was discussed. Design parameters for empirical field study were derived by controlling flow rate, velocity and caliber of pipes of the heat exchanger after the thermal efficiency of the heat exchanger material was evaluated. The heat exchange efficiency and effective thermal conductivity were measured with changing pattern through field thermal efficiency and thermal response test. Experimental results show that the metal material showed higher heat transfer efficiency than the PE pipe. Although the heat transfer efficiency was not high with the increase of the pipe diameter in the flow rate, it was high with the increase of the pipe diameter in the velocity.

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.

Analysis of the Maximum Heat Release Rate in Accordance with the Test Method of the Flame Retardant Performance for Pipe Insulation (배관용 보온재의 난연 성능 시험방법에 따른 최대 발열량 분석)

  • You, Woo Jun;Park, Jung Wook;Sin, Yeon Je;Park, Hyeong Gyu;Lim, Ohk Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • In this study, the heat release rate of pipe insulation is analyzed by considering the installation status in accordance with the standards ISO 20632 and NFPA 274. The flame retardation rate was evaluated for six types of test samples: polyethylene foam covered with beaten silver (PE(S)), PE foam tapped (PE(N)), elastomeric closed cell thermal insulation (rubber), Japanese PE foam (PE(J)), Japanese polyurethane foam (PU(J)), and Japanese styro form (ST(J)) by EN 13501-1 and fire growth curve. The results show that PU(J), PE(J), and PE(N) were Class E and ultra-fast, NFPA 274 test standards for Class D and Fast, and PE(S) by ISO 20632 were Class C and Slow, and Rubber and ST(J) were Classes and Low. However, the changes in the time-averaged maximum heat release rate for each test standard (ISO 20632 and NFPA 274) to evaluate the flame retardation rate differed among identical materials. This means that the fundamental study is necessary to analyze the more accurate reasons.

A Study on the Heating Characteristics of Radiant Floor Panel Using Heat Pipes with the Double Wick (이중 윅 타입 히트파이프를 이용한 바닥복사패널의 난방특성 연구)

  • Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • Most of the domestic residential buildings have used the traditional radiant heating system, circulating hot water through the cross-linked polyethylene(PE-X) pipe buried in the floor panel of the heating space. New type of the heating panel was recently developed using heat pipes with double wicks. Some experiments were carried out in this study to verify the thermal characteristics of this heating system at the unit heating space which surrounded by outer space whose temperature of air be maintained scheduled value with time. Through the various experiments with several parameters, such as flow rate, inlet and outlet temperatures of hot water and the heating duration and so on, we found that the floor heating system with heat pipes was able to reduce the pumping power for hot water circulation by 4~31% compared with the conventional panel heating system using PE-X pipe. These results could be used for optimal design and efficient operation of the heating system as well as improvement of thermal comfort.

Colonization of Microbial Biofilms in Pipeline of Water Reuse

  • Kumjaroen, Teratchara;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • Aim of this study was to investigate biofilms attached in pipeline of water reuse from the MBR system treating sewage without chlorination in correlation to the outflow water quality. Two general pipe materials: polyvinyl chloride (PVC) and polyethylene (PE) were employed in the experiment. The peak growths were found at week 4 in both pipes. The maximum biofilms in PE pipe was $33mgVSS/cm^2$ with the growth rate of $4.75mgVSS/cm^2-d$ which was significant higher than that of PVC pipe. Biofilms examined by PCR-DGGE technique revealed five bacterial species in PE biofilms namely Sinorhizobium medicae WSM419, Sinorhizobium fredii NGR234, Geobacter sp. M18, Parachlamydia acanthamoebae UV-7, and Mycobacterium chubuense NBB4. The VSS concentrations in outflow had directly correlated to the biofilm attachment and detachment. High COD concentrations of outflow appeared during biofilm detaching phase. In summary, water quality of reuse water corresponded to the biofilms attachment and detachment in the pipeline.

Buried Polyethylene Gas Pipes Analysis using Finite Element Method under External Loadings (외부 하중에 대한 매설 폴리에틸렌 가스배관의 유한요소 해석)

  • Kil, Seong-Hee;Jo, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.49-55
    • /
    • 2007
  • Polyethylene pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studies the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes are calculated according to the loading condition such as pipe types (pipe diameter $50{\sim}400mm$), burial depths ($0.6{\sim}1.2m$) and internal pressures ($0.4{\sim}4bar$). As a result, it is founded the effect and relation with each of loading conditions under the buried condition.

  • PDF

Development of Repair System for Drain Pipe to Enhance Safety (하수관거 안전성 향상을 위한 보수 시스템 개발)

  • Chung, Jee-Seung;Kang, Weon-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.45-53
    • /
    • 2011
  • This study was performed to develop repair and reinforcing materials in sewage drain pipe by using 40% of CAC(Calcium Aluminate Cement) and 4% of Polymer Powder. Regarding reinforcing materials to enhance load-bearing capacity, polyester textile and wire mesh were adopted and then they were evaluated by the measurement of deflection and Stress-strain Relationship. Two types of drain pipe made by concrete and PE were considered as plain specimens and then loading test were performed after repaired by CAC mortar impregnated reinforcing materials. As the test results of the load-bearing test on both drain pipe, there was higher load-bearing capacity on the specimen adopted wire mesh but debonding of repair mortar was found due to stiffness of wire mesh. By the way, repair system using CAC mortar impregnated polyster textile without wire mesh showed satisfactory results including bonding and load-bearing capacity regardless substrate, so this repair system using by mixture of CAC mortar and polyster textile is suggested as the reasonable repairing method within this experimental scope.

Studies on the Improvement of Butt Welding Characteristic of Polyethylene Pipes (PE 이중벽관의 맞대기 융착 용접 강도 향상에 관한 연구)

  • An, Ju-Seon;Lee, Kyng-Won;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Waste water is disposed to sewage disposal plant by underground PE double wall pipes. Various processes have been introduced to join PE pipes, but most of these methods have many disadvantages such as costs, lack of reliability and difficulties in joining, etc. Recently butt welding has been paid much attention to joint PE pipes as this process has many advantages such as cost, safety and reliability. In this study, newly developed heat plate, a patent-pending heat plate with a groove, was used to butt-weld PE double wall pipes with different misalignment gaps to simulate real underground conditions, and the butt welding temperature of PE pipe was determined by thermal analysis (Thermal Gravimetric Analysis, Differential Scanning Calorimetry and Dynamic Mechanical Analysis). The resulting joining characteristics of double wall pipes were compared with those from a conventional heat plate, in terms of stiffness, flattening and leakage tests. The results from the stiffness and flattening test showed that there were no big differences between the butt-welded joints made from these two plates. From the leakage test, although PE pipes welded with a conventional heat plate did leak below the required test conditions (10 min. at 0.75kgf/cm2), the pipes welded with a patent-pending grooved heat plate did not show any leakage even at a pressure 1.5 times higher than the required conditions. It was noted that by utilizing a grooved heat plate more complete fusion at the pipe joints could be obtained, which in turn induced a high quality joints.