• Title/Summary/Keyword: PE 필름

Search Result 185, Processing Time 0.027 seconds

Effects of Biodegradable Mulching Film Application on Cultivation of Garlic (마늘 재배시 생분해성 멀칭 필름 이용효과)

  • Lee, Jae Han;Kim, Mok Jong;Kim, Hong Lim;Kwack, Yong Bum;Kwon, Joon Kook;Park, Kyoung Sub;Choi, Hyo Gil;Khoshimkhujaev, Bekhzod
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.326-332
    • /
    • 2015
  • The effect of biodegradable mulching film on the growth and development of garlic were investigated in order to develop eco-friendly weed control techniques. The treatments included biodegradable film (Bio-De) and black (Black-PE), green (Green-PE), transparent (Trans-PE) polyethylene mulching films. Non-mulched, bare soil (Non-mulching) was used as a control. Light transmittance value among tested mulching films was the highest in Trans-PE (86.1%) followed by Bio-DE and Green-PE, and the lowest value was observed for the Black-PE (1.1%). All mulching films without exclusion elevated soil temperature, especially Trans-PE and Bio-DE compared to bare soil. Plant height and mean bulb weight were increased due to mulching films with the highest values observed for Trans-PE and Bio-DE treatments. After seven months of field application there were no significant degradation signs on PE plastic films, whereas it was easy to see horizontal cracks on the Bio-DE film surface after five month of usage.

Historical Investigation on Development of Produce and Packages or Physical Analysis of Packaging's Materials of Cheese in Korea since 1967-2 (1967년 이후 한국(韓國)에서 치즈제품(製品)의 개발(開發)과 포장(包裝)의 변화(變化) 및 그 포장재(包裝材)의 생물학적(生物學的) 조사연구(調査硏究)-2)

  • Kim, Duck-Woong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • Physical analysis of some composite films of outer packaging at process cheeses in Korea is as following. In comparison with four composite films, tensile strength is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;MD9.55kg/15mm,\;TD8.95kg/15mm>79.3{\mu}PET/PVDC/L-LDPE\;film\;MD5.37kg/15mm,\;TD5.01kg/15mm>96.9{\mu}PE/PVDC/PE\;film\;MD5.42kg/15mm,\;TD4.73kg/15mm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;MD4.65kg/15mm,\;TD4.22kg/15mm$. Water vapor transmission is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;0.41g/m^2{\cdot}24hr>79.3{\mu}PET/PVDC/L-LDPE\;film\;3.77g/m^2{\cdot}24hr>96.9{\mu}PE/PVDC/PE\;film\;3.81g/m^2{\cdot}24hr>61.6{\mu}PVDC/PE/AL-vac/4.91g/m^2{\cdot}24hr$. Gas transmission $O_2:N_2:CO_2$ is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;1.81:0.74:4.2cc/m^2{\cdot}24hr{\cdot}atm>79.3{\mu}PET/PVDC/L-LDPE\;film\;13.4:6.4:34.2cc/m^2{\cdot}24hr{\cdot}atm>96.9{\mu}PE/PVDC/PE\;film\;15.3:7.1:42.0cc/m^2{\cdot}24hr{\cdot}atm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;25.3:12.5:59.3cc/m^2{\cdot}24hr{\cdot}atm$ each other. And for preservation this were sealed to filths $N_2,\;CO_2$ gas or defilling ai (vacuum type) in the packaging and reserved less than $10^{\circ}C$ at refrigerator.

  • PDF

Microclimate and Crop Growth in the Greenhouses Covered with Spectrum Conversion Films using Different Phosphor Particle Sizes (광전환재 크기가 다른 광전환 필름 피복 온실 내 미기상 및 작물 생육)

  • Park, Kyoung Sub;Kwon, Joon Kook;Lee, Dong Kwon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The objective of this study was to analyze the microclimate and the growth of tomato and lettuce in the greenhouses covered with spectrum conversion films using different phosphor particles sizes. Two spectrum conversion films using phosphor particles larger than $10{\mu}m$ (Micro-film) and smaller than 500 nm (Nano-film) in radius, and poly-ethylene (PE) film were used in double-layered greenhouses as outer coverings. PE films were used as inner coverings in all the greenhouses. Thickness of the films for inner and outer coverings was 0.06 mm. Tensile strength, elongation, and tearing resistance of the Micro- and Nano-films were not different from those of the PE film. Transmittances at a wavelength of 300-1100 nm were a little higher at the Micro-film and lower at the Nano-film than that of the PE film, respectively. Air temperatures at the Micro- and Nano-films were over $2^{\circ}C$ higher than at the PE film, but no significant difference was observed between the two light conversion films. The soil temperature at the Nano-film was $1.5^{\circ}C$ and $3^{\circ}C$ higher than at the Micro- and PE films, respectively. The yields of tomato at the Micro- and Nano-films were 12% and 14% higher than at the PE film, but no significant difference was observed between the two spectrum conversion films. The total soluble solid showed no significant differences among all the films. The yields of lettuces at the Micro- and Nano-films were 27% and 59% higher than at the PE film. Hunter's red (a) value of the lettuce leaf was the highest at the Nano-film. In this experiment, tomatoes requiring high irradiation were better at the Nano film, while lettuce requiring low irradiation better at the Micro film.

Comparison of Anti-rust Effect and Mechanical Properties of Celite Film and (세라이트필름과 폴리에틸렌 필름의 방청효과 및 기계적 물성 비교)

  • Chung, Yong-Chan;Suh, Soo-Yul;Chun, Byoung-Chul
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.127-133
    • /
    • 2007
  • Celite with enormous pore space inside can hold small molecules and can be well blended with polyethylene (PE) to make a Celite-PE film. Two types of Celite-PE film were prepared, one with Celite surface-treated with surfactant to reduce the hydrophilicity and another with plain Celite. The anti-rust chemical such as dicyclohexylamine, dicyclohexylamine nitrite, or diisopropylamine was allowed to permeate into celite pore in the film, and slowly evaporated to protect the packaged steel material from the rust for a long period of time. The chemical concentration in the different packaging film bags was analyzed by a gas chromatography for a month, and the anti-rust effect on iron labware was compared for a six month period. The Celite film was superior to PE film in anti-rust effect and the long-term anti-rust chemical evaporation.

  • PDF

Mechanical Properties and Degradability of Degradable Polyethylene Films Containing Crosslinked Potato Starch (가교결합 감자 전분을 함유한 분해성 polyethylene 필름의 기계적 성질 및 분해 특성)

  • Kim, Mee-Ra;Lee, Sun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1298-1305
    • /
    • 2000
  • Potato starches were crosslinked with 0.1, 0.5, 1.0, and 2.0% epichlorohydrin. Starch/polyethylene(PE) cast films were prepared to contain 5% of the crosslinked potato starch. Mechanical properties and degradability of these films were measured and compared to those of the films containing native potato starch. Mechanical strength of the films containing crosslinked potato starch was higher than that of the film containing native starch. Thermal degradability measured by a FT-IR and an Instron showed that crosslinked starch/PE films degraded faster than native starch/PE films. Biodegradability of the starch/PE films was accelerated by the addition of crosslinked starch to the PE films.

  • PDF

Efects of Biodegradable Mulching Films Containing Rice Powder on Sweetpotato Growth (쌀 분말이 함유된 생분해성 멀칭필름이 고구마 생육에 미치는 영향)

  • Sin Young Park;Ju Hyun Im;Eun Byul Go;Kil Ja Kim;Jae Min Park;Dong Kwan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • In this study, two types of biodegradable film prototypes were produced using plastic resin containing rice powder. The application of these biodegradable films in sweetpotato (Ipomoea batatas L. Lam) fields and their impacts of plant growth, yield, and the soil environment were assessed, in comparison with Polyethylene (PE) film. The light transmittance of the biodegradable film containing 30% of 350 mesh rice powder (BF30-350RP) was 0.8%, which was lower than the 2.0% light transmittance of the biodegradable film containing 40% of 500 mesh rice powder (BF40-500RP) and 2.7% light transmittance of PE film. Surface temperature measurements on clear day indicated that the PE film exhibited the lowest temperature, with the minimal difference observed between BF40-500RP and BF30-350RP. Assessment of the damage ratio resulting from agricultural work revealed a ranking of 0.4% for the PE film, 3.3% for BF500-400RP, and 5.3% for BF350-30RP. Visible decomposition of BF40-500RP and BF30-350RP commenced after 40 and 30 days of outdoor exposure, reaching 62.3% and 70.4% decomposition at 90 days post-exposure, respectively. The decomposition of biodegradable films applied to sweetpotato fields progressed more slowly in BF40-500RP than in BF30-350RP. The BF40-500RP film on the surface of the ridges was decomposed by 5%, 30%, 55%, and 90% after 30, 60, 90, and 120 days after planting sweetpotato cuttings, respectively. Both types of biodegradable films at the ridge and furrow borders were completely decomposed after 75 days of sweetpotato planting. In a field where the surface was sealed by mulching without growing sweetpotatoes, the soil moisture and its deviation were lower in the order of PE film, BF40-500RP, and BF30-350RP, but the differences were not significant. The soil temperature was higher for PE film mulching than for the biodegradable films containing rice powder, but the differences were small. Two months after sweetpotato planting, the daily average soil moisture decreased by 2.5%point for BF30-350RP mulching, 1.5%point for BF40-500RP mulching, and 1.1%point for PE film mulching over seven days. Soil temperature was similar for both biodegradable film mulches, but increased steadily for the PE film mulch, reaching a daily average of 0.1℃ higher than for the biodegradable films. Sweetpotato vine growth and tuber yield were similar for all the mulching films tested.

Effect of Heat-Conservation Method on Watermelon (Citrullus lantatus $T_{HUNB}.$) in Unheated Plastic House. (시설 수박의 터널피복재 보온효과 구명)

  • 주선종;정재현;이경희;황선웅
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.04a
    • /
    • pp.87-91
    • /
    • 1999
  • 봄철 하우스 수박 무가온 조숙재배에 알맞는 보온방법을 개발하고자 아취형 단동하우스에 PE필름터널, 유공필름+축열물주머니, 유공필름터널+부직포터널구를 처리하고, 삼복꿀수박을 '98년 3월 23일 정식하여 4월 27일까지 36일간 터널피복재의 보온성을 검토한 결과는 다음과 같다. (1) 보온재 피복 재배 기간중 터널내 최저온도는 PE터널구 10.9$^{\circ}C$에 비하여 유공필름터널에 축열물주머니구와 부직포터널구는 각각 0.9, 2.1$^{\circ}C$ 높았다. (2) 3월하순 활착기의 하우스내 일사량은 실외 175.2w/$m^2$ 비하여 124.2w/$m^2$로 51w/$m^2$ 낮았다. (3) 터널피복재 환기작업에 따른 소요 노동력은 PE터널구 25.2시간/10a/36일에 비하여 유공필름터널+부직포터널구는 32.4시간으로 7.2시간/10a/36일 증가하였으나, 유공필름터널+축열물주머니는 개폐작업으로 인한 투하 노동력이 없었다. (4) 터널재배 기간중 유공필름터널+부직포터널구가 초기생육이 촉진되었으며, 생육후기에 발생한 흰가루병 이병엽율은 2.8%로 현저히 감소하였다. (5) 수박의 수확기는 PE필름터널구 6월 22일에 비하여 유공필름터널+축열물주머니와 부직포터널구는 6월 12, 15일로 7, 10일 앞당겼으며, 수량은 PE터널구 2,385kg/10a에 비하여 20, 32% 각각 증수하였다.

  • PDF

Effect of PE Film Thickness on MA (Modified Atmosphere) Storage of Strawberry (Polyethylene Film 두께에 따른 딸기의 MA(Modified Atmosphere) 저장 효과)

  • 김종국;문광덕;손태화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 1993
  • This study was conducted to investigate the effect of various polyethylene (PE) film packaging on the quality of strawberry during storage at low temperature. Gas composition in film was changed rapidly at early stage of storage and then kept at the level of 5~10% $CO_2$and 1~3% $O_2$. Weight loss and decay rate were low at 0.08mm PE film packed strawberries. Titratable acidity, pH and soluble solids were changed slightly during storage but its large difference according to film thickness was not observed. Decrease of flesh firm-ness and a value was restrained by PE film packaging. Free sugar of strawberry was composed of glucose and fructose in similar content and it was decreased a little during storage but the difference according to film thickness was not observed. The organic acids in strawberry were citric acid, malic acid, succinic acid, ascorbir acid, oxalic acid, tartaric acid and pyruvic acid and the major organic acid was citric acid. The contents of citric acid, malic acid, succinir acid and ascorbic acid were decreased and oxalic acid and tartaric arid were not changed during storage but pyruvic acid was increased in early stage and then decreased. These changes of organic acid were slight in packaged with 0.08mm PE film strawberry.

  • PDF

Oxidation and mechanical relaxation properties of chlorinated LDPE film (염소 처리된 저밀도 폴리에틸렌 필름의 산화 및 기계적 완화 특성)

  • 황명환;박동화;박구범
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.27-34
    • /
    • 1991
  • This paper is for the properties of the oxidation-proof of the partially discharged and of the molecular motion on chlorinated PE Film. this paper also shows the properties of the molecular motion of the ${\gamma}$ ray irradiated PE Film. 1 In the surface of the PE Film enforce chlorination, C-Cl be distributed up to 10 $\mu$m deep. 2. In according to the development of the chlorination, the measure of crystalization decreased and cross link occured. 3. Chlorination PE Film control the oxidation on ozone to occuratlon by partial discharge and it lost bonding chlorine. 4. in according to chlorination, ${\gamma}$ absorption in motion of CH2 main chain of PE drcreased by chlorine stbstitution.

  • PDF

Optical Characteristics of Two New Functional Films and Their Effect on Leaf Vegetables Growth and Yield (2종류의 기능성필름이 광학특성과 엽채류 생육과 수량에 미치는 영향)

  • Kwon, Joon Kook;Khoshimkhujaev, Bekhzod;Park, Kyoung Sub;Choi, Hyo Gil;Lee, Jae-Han;Yu, In Ho
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Three leaf vegetables, namely green lettuce, red lettuce (Lactuca sativa) and red-veined chicory (Cichorium intybus) were grown in minigreenhouses covered with two new functional films and conventional polyethylene film (PE). Seedlings of leaf vegetables were transplanted in a plastic troughs filled with soil-perlite mixture. Two functional films were made from polyolefin (PO) material. Measurement of optical characteristics showed that polyolefin films have better transmittance for the photosynthetic active radiation (PAR, 400-700nm) and higher absorptance for the ultraviolet radiation (UV, 300-400nm) in comparison with the conventional PE film. After three months of utilization higher loss in PAR transmittance was observed for conventional PE film. Leaf vegetables growth was enhanced and yield was increased in greenhouses covered by new functional films.