• Title/Summary/Keyword: PDP cell

Search Result 179, Processing Time 0.03 seconds

Optical Characteristics of AC PDP Cell with ZnO Electrode (ZnO 투명전극을 이용한 AC PDP 셀의 제작 및 광학적 특성)

  • Lee, Sung-Wook;Lee, Kyu-Suk;Park, Kyung-Suk;Lim, Dong-Gun;Park, Min-Woo;Kawk, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1948-1950
    • /
    • 2005
  • In the recent years, much interests and attraction has been paid on the plasma display panel. To achieve high performance display panel, there has been a strong demands for studies on the transparent conducting films such as ITO and ZnO. In this study, we propose PDP cell with ZnO transparent conducting electrode. The electrical and optical characteristics of PDP cell with ZnO transparent electrode were studied and compared with that of conventional ITO electrode.

  • PDF

Application of the New Panel Structure for High Luminous Efficiency in AC-PDPs

  • Kim, Jae-Sung;Jeon, Chung-Huan;Lee, Eun-Cheol;Ahn, Young-Joon;Kang, Seok-Dong;Ahn, Sung-Yong;Shin, Young-Kyo;Ryu, Jae-Hwa;Schemerhorn, Jerry D.
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.32-34
    • /
    • 2000
  • A new PDP cell structure called CSP(Charge Storage Pad) improves the luminous efficiency by 1.6 times and prevents cross talk between adjacent cells. The CSP, which is a conducting material, is inserted between the dielectric layer and the MgO film in the front plate. This CSP produces a longer time-averaged discharge path to get a high luminous efficiency and confines the discharge to prevent cross talk.

  • PDF

A New Structure and Driving Scheme of PDP for High Luminous Efficacy

  • Yi, Jeong-Doo;Kim, Joon-Yeon;Chae, Su-Yong;Kim, Tae-Woo;Cho, Sung-Chun;Chun, Byoung-Min;Kim, Jeong-Nam;Cho, Yoon-Hyoung
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.10-13
    • /
    • 2004
  • We have developed a new PDP cell structure called MARI(Multi Anode for Reduction of Ionic effect) and new driving scheme achieving a high luminous efficacy. The MARI PDP has middle electrode inserted between X and Y main electrodes. In the MARI PDP, reset and scan voltage is applied to middle electrode and sustain voltage is applied to X and Y electrode. Using a long gap sustain discharge we accomplished a high luminous efficacy. And we developed 42"full panel adopting MARI structure and new driving scheme and attained luminous efficacy of 2.35 lm/W.

Electric field distribution and discharge characteristics in accordance with various ITO electrode structures in AC-PDP

  • Cho, Seok-H.;Oh, P.Y.;Kim, J.H.;Hong, Y.J.;Kwon, G.C.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.396-399
    • /
    • 2008
  • In this study, the electric field distributions have been investigated by simulation in accordance with the various shapes of ITO-electrodes. Also we have measured the density of excited Xe atoms in the 1s5 state in discharge cell, where the gap distance of 60 um, gas pressure of 400 Torr, Xe contents of 7%, and sustaining voltage of 200 V are kept in this experiment. The maximum density of excited Xe atoms in the 1s5 state in a discharge cell for the fish-boned, T shaped and squared ITO electrodes have been measured to be $3.01\;{\times}\;10^{13}\;cm^{-3}$, $2.66\;{\times}\;10^{13}\;cm^{-3}$ and $2.06\;{\times}\;10^{13}\;cm^{-3}$, respectively. It is shown that the electric field distribution with different ITO Electrodes is essential factor for these maximum density of excited Xe atoms in discharge cell.

  • PDF

Measurement of Luminance and Luminous Efficiency of Plasma Display Panel (플라즈마 디스플레이 패널의 휘도 및 발광효율의 측정)

  • Ku, Chi-Wuk;Lee, Hyeong-Goo;Choi, Young-Sup;Ko, Kwang-Cheol;Kang, Hyung-Boo;Jung, Kyu-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2218-2220
    • /
    • 1999
  • Plasma Display Panel(PDP) has mirco-cell, so it is difficult to know the physical properties of particles in PDP cell. To know this, we made a cell that is 200 times as large as a general PDP cell. Using this cell, the temperature and the density of electrons have been measured by the fast scanning probe.

  • PDF

Toward Efficacy Improvement in a PDP Discharge Cell from Structural Considerations

  • Tachibana, Kunihide
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.20-23
    • /
    • 2009
  • The efficacy improvement issues in a unit discharge cell have been approached from the structural considerations. The tested cell designs include (a) a coplanar type with annular auxiliary electrode buried in barrier ribs, (b) a coplanar type with split auxiliary electrodes also burred in barrier ribs and (c) a coaxial type with a floating electrode stacked on the base electrode. From spatiotemporally resolved optical images of near-IR emission taken by a gated-ICCD camera and relative VUV emission intensity estimated by laser absorption spectroscopy, the differences in the discharge and light emission performances of those three cell types have been compared and discussed.

  • PDF

Application of the new panel structure for high luminous efficiency in AC-PDPs

  • Kim, Jae-Sung;Jeon, Chung-Huan;Lee, Eun-Cheol;Ahn, Young-Joon;Kang, Seok-Dong;Ahn, Sung-Yong;Shin, Young-Kyo;Ryu, Jae-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.23-24
    • /
    • 2000
  • A new PDP cell structure called CSP (Charge Storage Pad) improves the luminous efficiency by 1.6 times and prevents cross talk between adjacent cells. The CSP, which is a conducting material, is inserted between the dielectric layer and the MgO film in the front plate. This CSP produces a longer time-averaged discharge path to get a high luminous efficiency and confines the discharge to prevent cross talk.

  • PDF

Analysis of Energy Flow and Barrier Rib Height Effect using Ray-Optics Incorporated Three-dimensional PDP Cell Simulation

  • Chung, Woo-Joon;Jeong, Dong-Cheol;Whang, Ki-Woon;Park, Jae-Hyeung;Lee, Byoung-Ho
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.46-51
    • /
    • 2001
  • Using ray-optics code incorporated with three-dimensional PDP cell simulation, we have analysed the energy flow in the PDP cell from the electric power input to the visible light output. Also, the visible light output profile and viewing angle distribution were obtained. We applied our code to the analysis of the barrier rib height effect on the visible light luminance and efficiency of the sustaining discharge. Although cells with higher barrier rib generate more VUV photons, less ratio of visible photons are emitted toward front panel due to the shadow effect. Thus, there exists optimal barrier rib height giving the highest visible luminance and efficiency. This kind of code can be a powerful tool in designing cell geometry.

  • PDF

Control of Blue Phosphor Layer Cross-section and Its Improved Discharge Characteristics

  • Jeon, Byung-Soo;Choi, Seo-Young;Moon, Cheol-Hee;Heo, Eun-Gi;Lee, Kwang-Sik;Whang, Ki-Woong;Bae, Chul-Han
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.583-585
    • /
    • 2002
  • The effects of phosphor properties such as the granular sizes and shape on the crosssectional shape of phosphor layer and plasma discharge characteristics for improving the luminance and luminous efficiency in ac PDP have been investigated. As the granular size decreases, the thickness of vertical side of barrier rib in blue cell decreases, and wheras the thickness of bottom side increases due to increased dispersibility. In addition, the phosphor with round granular shape showing good dispersibility shows better voltage margin and higher luminous efficiency due to their improved discharge volume and packing density.

  • PDF