• 제목/요약/키워드: PDP cell

검색결과 179건 처리시간 0.026초

A Comparison Study of the Effect of Adding Ar or Kr Gas into the Conventional Gas Mixtures in a Matrix Type PDP

  • Khorami, Alireza;Ghanbari, Shirin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.748-751
    • /
    • 2009
  • This paper provides a novel scheme to enhance luminous efficiency within Plasma Display Panels (PDPs). The He-Xe or Ne-Xe mixtures are mainly used in conventional PDP cells, where their discharge characteristics exemplify different behavior. Significantly, the excitation efficiency in He-Xe is lower than that of the Ne-Xe mixture. This paper demonstrates that by adding a small quantity of Ar or Kr gas in Ne-Xe mixture increases cell efficiency, while for the He-Xe mixtures their cell efficiency is reduced.

  • PDF

면방전 AC PDP에서 콘트라스트 개선에 관한 연구 (A Study on the Contrast Ratio Improvement of Surface Discharge AC PDP)

  • 안양기;윤동한
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권11호
    • /
    • pp.536-540
    • /
    • 2002
  • This paper proposes a method to drive an AC plasma display panel(PDP) with a significantly improved contrast ratio. In the proposed method, during the first sub-field of one frame, all PDP cells are reset by the ramp waveform, and during the other sub-field, only the cells turned on in the previous sub-field are reset. No light is emitted during the reset period of every sub-field except the first sub-field. For a 10-bit picture, the luminance of the dark level for the proposed method is 10 times lower than that for the conventional method, in which the ramp waveform for the reset is used in every sub-field. Accordingly, the contrast ratio for the proposed method is 10 times higher than that for the conventional method. For the 10-bit picture, the measured contrast ratio was about 3080:1 for the proposed method and about 285:1 with the conventional method, a result the contrast ratio has been increased in 10.8 times. This result shows that the proposed method can realize an image with high contrast ratio.

Effect of Secondary Electron Emission of Phosphor on the Plasma Display Panel Discharge

  • Song, Su-Bin;Park, Pil-Yong;Lee, Han-Yong;Sea, Jeong-Hyun;Kang, Kyung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.594-597
    • /
    • 2002
  • We studied the effect of secondary electron emission from the back plate of AC-PDP, on the ramp waveform driving of the system, using two-dimensional PDP cell discharge simulator. It is found that the secondary electron emission from back plate plays a significant role in getting a stable weak discharge during the ramping up of X-Y electrode voltage. This is because grounded address electrode acts as a cathode during the setup of surface charge, and the secondary electron emission from phosphor in the back plate must be large enough to accumulate surface charges on the dielectric layers without strong plasma discharge. We have concluded that the secondary electron emission coefficient(${\gamma}$) of phosphor, besides MgO, must be known to understand the characteristics of the PDP system. A few suggestions for improvement of the system is also made and tested.

  • PDF

The 2-dimensional Discharge Cell Simulation for the Analysis of the Peset and Addressing of an Alternating Current Plasma Display Panel

  • Kim, Joong-Kyun;Chung, Woo-Jun;Seo, Jeong-Hyun;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • 제2권1호
    • /
    • pp.24-33
    • /
    • 2001
  • The characteristics of the reset and the address discharges of an alternating current Plasma Display Panel (ac PDP) were studied using 2-dimensional numerical discharge cell simulation. We investigated the wall charge variations during the reset discharge adopting ramping reset pulse and the subsequent addressing discharge. The roles of the ramping reset scheme can be divided into two stages, each electrode gathers wall charges during ramping-up of the initial stage and the built-up wall charges are lost during ramping-down of the later stage. Address discharge does not only change the wall charge distributions on the address and the scan electrodes but also on the sustain electrode. The increase in the wall charges on the sustain electrode was observed with the variation of the applied voltage to the sustain electrode during the address period. The increase of the applied voltage to the sustain electrode during the address period is expected to induce the decrease of the sustain voltage during the display period.

  • PDF

PDP 방전 셀에서 빛이 방출되는 물리적 메커니즘 (Physical Mechanism of Light emission from Discharge Cells in the Plasma Display Panel)

  • 엄환섭;최은하
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.556-562
    • /
    • 2006
  • 플라즈마 디스플레이 패널은 양극과 음극사이의 방전공간을 가진 많은 방전 셀로 구성되어 있다. 네온과 제논가스로 채워진 이 방전공간에서 전기방전이 일어난다. 전자온도가 방전조건에 의하여 정해지며 이온도를 통하여 제논의 함량에 따른 방전전압을 이론적으로 계산할 수 있다. 방전 셀 내의 플라즈마가 147 nm와 173 nm의 극자외선을 방출하고 이 자외선들은 형광물질을 여기하여 가시광선을 방출한다. 이러한 모든 과정에 대한 물리적인 메커니즘의 모델을 만들고 실험에서 측정된 데이터와 모델이 예시하는 결과를 비교한다. 실험 데이터는 이론 결과와 비교적 잘 일치하는 것을 관찰할 수 있다. PDP의 방전과 동작을 더욱 개선하기 위하여 새로운 물질이 필요하고 더 좋은 셀 구조가 요구된다.

Long Electrode Gap을 가진 Macro Cell에서의 고효율 PDP 특성 연구 (High Efficacy Plasma Display Utilizing Macro Discharge Cell Structure with Long Electrodes Gap)

  • 김민태;허준;김윤기;김동현;이해준;이호준
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1314-1318
    • /
    • 2012
  • Recently, applications of plasma display to the large public display and transparent display gain much attention. With this background, we report characteristics of opposite electrodes discharge cell with long electrode gap in comparison with conventional co-planar surface discharge. The cell size of test panel is $2950{\mu}m{\times}840{\mu}m$, which corresponds to that of the display having diagonal size of 130" with XGA resolution. Electrode gap of co-planar and opposite electrode structure are $240{\mu}m$ and $500{\mu}m$ respectively. These gap dimensions provide similar driving voltage windows. Experimental results show that opposite discharge provides approximately four fold higher luminous efficacy compared with that of the surface discharge. Resulting efficacy is found to be higher than 19 lm/W in green phosphor with 10 KHz continuous pulse operation.

Discharge Characteristics of Counter Electrode Discharge Cells of PDP

  • Kim, Young-Jin;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.477-479
    • /
    • 2006
  • In this study, a stripe type counter electrode discharge cell for PDP was attempted to realize high luminance efficiency and low firing voltage for fine pitch discharge cells. The cells were prepared using electroplated Cu/Ni electrodes coated with glass dielectric layer. The discharge behaviors of such cells were observed. These results indicate that the counter electrode discharge cells have different discharge behavior compared with coplanar cells, which may affect the luminance efficiency of the panel.

  • PDF

High efficacy PDP

  • Oversluizen, G.;Dekker, T.;Gillies, M. F.;Zwart, S.T. de
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.339-342
    • /
    • 2003
  • Main PDP panel efficacy improvement factors are discussed. A large panel efficacy improvement can be obtained through a combination of discharge efficiency improvement and phosphor improvement. Important design elements are a high Xe-content gas mixture, the application of a $TiO_2-layer$, and a new green phosphor with little saturation at high VUV-load. In a 4-inch color test panel with a conventional stripe-type cell configuration a white efficacy of 4.4 lm/W and a luminance of 5000 $cd/m^2$ is obtained for sustaining at 250V in addressed condition.

  • PDF