• Title/Summary/Keyword: PDP(Plasma Display)

Search Result 684, Processing Time 0.025 seconds

A Study on the Improvement of the High Temperature Misfiring in AC PDP (AC PDP의 고온 오방전 개선에 관한 연구)

  • Choi, Joon-Young;Ham, Myung-Soo;Park, Chung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1125-1131
    • /
    • 2004
  • Misfiring is usually observed at high ambient temperature in plasma display panel (PDP). This leads to bad image quality and limits the productivity of PDP industry. In this paper, experimental observations and improvement on the misfiring at high ambient temperature have been studied. In order to reduce the high ambient temperature misfiring different slope of ramp erase pulse corresponding to the temperature are applied. The experimental results show that the suggested method is quite effective for reducing the high temperature misfiring phenomena.

Improvement of the Accuracy of Optical Simulation Using by the Multi-cube UV Source in PDP Cells (Multi-cube UV source 이용한 PDP에서 광학시뮬레이션의 정확성 개선에 관한 연구)

  • Kang, Jung-Won;Eom, Chul-Whan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-44
    • /
    • 2007
  • Optical simulation of the rear and front panel geometries were needed to improve the luminance and efficiency in PDP cells. The 3-dimensional optical code can be used to analyze the variation of geometries and changing of optical properties. In order to improve the accuracy of simulated results, a new UV source, called a multi-cubes UV source, was designed. To design the source, at first UV distribution was calculated with the plasma fluid code and then the UV distribution was transformed to the multi-cube structures in the optical code. Compared to the results from existing UV source, called a planar UV source, could be improved the accuracy of visible light distribution. Simulated results were also compared to the visible distribution measured with the ICCD in a real PDP cell.

  • PDF

3-Dimensional Emission characteristics of an AC PDP Cell

  • Jung, Jae-Chul;Jeong, Dong-Cheol;Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.529-532
    • /
    • 2004
  • The spatio-temporal variation of Infra Red(IR) emission images were obtained from a real 3-dimensional discharge space of a surface discharge type, alternating current plasma display panel(AC PDP) cell with the Ne-Xe(4%) 400Torr gas mixture. IR emissions were observed in each period of the ADS(Address and Display Separation) driving scheme with ramp initializing waveform using an images intensified charge coupled device(ICCD) camera. The roles of each electrode were identified and it was compared with the results of the discharge simulation and of the wall charge distributions measured by the electro-optic technique.

  • PDF

Formation of PDP cell structure using Nd:YAG laser beam (Nd:YAG 레이저빔에 의한 PDP 방전셀의 구조 형성)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.129-132
    • /
    • 2000
  • The PDP(Plasma Display Panel) barrier rib material on the glass substrate was patterned for fabrication of the PDP cell using Nd:YAG laser(1064 nm) which can generate the second(532 nm) and forth(266 nm) harmonic wave by HGM(harmonic generation modules). At a scan speed of 20 ${\mu}m/s$ with the second harmonic wave(532 nm) of Nd:YAG laser, the etching threshold laser fluence of the PDP material was 6.5 $mJ/cm^2$ and a sample(thickness = 180 ${\mu}m$) on the glass substrate was removed clearly at a laser fluence of 19.5 $mJ/cm^2$. In order to increase the throughput of the fabrication we divided a single-beam into multi-beams by using a metal mask between the sample and the focusing lens. As a result, 10 lines of PDP cell were formed by one laser beam scanning at a scan speed of 200 ${\mu}m/s$ and a laser fluence of 2.86 $J/cm^2$.

  • PDF

Characteristics of Micro Groove grinding for the Mold of PDP Barrier Ribs (PDP 격벽용 금형의 마이크로 홈 연삭 특성)

  • 조인호;정상철;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.963-966
    • /
    • 2000
  • Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of curvature of bottom was 7.75 ${\mu}{\textrm}{m}$. This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future.

  • PDF

PDP 구동 원리에 관한 트리즈 기법적 고찰

  • Kim, Won-Sik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.267-270
    • /
    • 2007
  • 21세기에 들어서면서 박막 대형 TV의 발전은 눈부시다. 최초로 박막 대형 TV의 길을 열어 준 디스플레이는 Plasma Display Panel (PDP)이다. PDP TV는 1920 년대 초에 개발되었으나 당시의 Cathode Ray Tube (CRT) TV에 밀려 사장되었다가 그 이후 지속적인 연구를 통해 약점을 극복하여 2000 년대에 들어서면서 대형화와 박막화에 성공하면서 CRT를 넘어서기 시작하여 대형 TV 분야에서는 가장 많이 팔리는 디스플레이로 알려져 있다. 이 논문에서는 PDP 기술이 시장화에 성공할 수 있는 계기가 된 패널 구동 기술 발전에 대해 TRIZ으로 고찰을 다루고자 한다.

  • PDF

Address Electrode for PDP by Ink-Jet Method

  • Park, Lee-Soon;Im, Moo-Sik;Jung, Young-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.775-777
    • /
    • 2003
  • Several methods are available for the fabrication of electrode pattern for the plasma display panel(PDP) including screen printing and photolithographic method. Piezo type ink-jet printing method is considered to the method of choice for electrode patterning in manufacturing of PDP. Both silver ink and absorbent layer paste formulation were developed for ink-jet printing of electrode pattern. The ink-jet printing of silver electrode with preformed absorbent layer was especially suitable for the patterning of address electrode for high resolution PDP.

  • PDF

Evaluation of Cooling Performance of PDP by Heat Spreader (Heat spreader를 통한 PDP의 냉각성능 평가)

  • Kim, Jae-Jung;Chang, Seog-Weon;Cho, Young-Jin;Lee, Tae-Gu;Noh, Hong-Koo;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.612-617
    • /
    • 2001
  • This paper reports the cooling performance of a PDP(plasma display panel) with a heat spreader by means of numerical analysis. Due to the simplifications and assumptions inherent in the analysis, computed results are found to differ those of the experiment by 13%. Calculation shows a maximum temperature of $65^{\circ}C$ for the plasma glass, as opposed to the allowable temperature of $90^{\circ}C$, producing a temperature difference of $25^{\circ}C$ between the upper and lower regions. This is enough to cause cracks in the plasma glass. In order to avoid this, more ventholes are added at the upper center region of the back cover, thereby causing a $3^{\circ}C$ drop in the maximum temperature, which reduces the temperature difference to $12^{\circ}C$. The new design gives more uniform temperature distribution across the plasma glass.

  • PDF

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

Study on Noise Reduction of Plasma Display Panel (플라즈마 디스플레이의 소음 저감 연구)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.693-698
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operates on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. For this discharge, both high voltage and currents are needed and cause an acoustic noise. We investigated the noise characteristics connected with both a electromagnetic elements from SMPS to panel through X, Y and logic board, and a mechanical elements form panel to case through transfer path which related with vibration and heat. To reduce the noise of PDP, a discharge pulse memory design related with both higher brightness and lower power consumption is important and mechanical characteristics connected with dissipation process of both heat and vibration generated by panel discharge must be investigated.

  • PDF