• Title/Summary/Keyword: PDMS membrane

Search Result 132, Processing Time 0.024 seconds

Pervaporation Separation Properties of Chlorinated Hydrocarbons through Poly(1-trimethylsilyl-1-propyne) Modified Memebrane (Poly(1-trimethylsilyl-1-propyne) Modified Memebrane을 통한 유기염소계화합물의 투과증발 분리 특성)

  • 백귀찬;변인섭;이용희;이용택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.66-69
    • /
    • 1998
  • 1. 서론 : 본 연구는 시간이 경과함에 따라 free volume감소로 나타나는 PTMSP[Poly(1-trimethylsilyl-1-propyne)] memebrane의 pysical aging을 늦추거나 방지할 목적으로 PTMSP polymer를 합성하여 여기에 hydroxy-terminated PDMS를 graft시켜 PTMSP/PDMS graft copolymer를 제조하였다. 용매증발법에 의해 PTMSP memebrane 및 PTMSP/PDMS graft copolymer memebrane을 제막한 후 PTMSP막의 물리적 노화를 관찰하기 위한 시점에서 조업시간에 따른 이들 막의 transport property을 살펴 보았다. 또한 이들 polymer을 사용하여 0.5 wt%의 희박 dope solution을 제조한 후 여기에 상전환법에 의해 제조된 비대칭 PEI(polyetherimide)지지막을 dip-doping시켜 PTMSP-PEI, PTMSP/PDMS-PEI 복합막을 제조하여 상기의 두 막과 투과증발 특성을 상호 비교하여 보았다. 그리고 객관적 비교 자료를 얻을 목적으로 PDMS막과 PDMS-PEI 복합막을 각각 제막하여 동일조건에서 실험을 수행하였다. 따라서 본 연구는 수중에 미량 용해된 chloroform, trichloroethylene, perchlororthylene, 1,1,1-trichloroethane 등의 유기염소계화합물 제거 실험을 통해 PTMSP, PTMSP/PDMS 등의 dense membrane과 asymmetric composite membrane 사이의 상관관계 및 이들 막들의 투과특성을 서로 비교, 분석하는데 목적을 두었다.

  • PDF

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Prediction of Permeation Flux and Sorption Characteristics of Volatile Organic Solvents on PDMS Membrane (휘발성 유기용매의 PDMS막에 대한 투과 플럭스와 수착특성 예측)

  • 오한기;장화익;이광래
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2000
  • Prediction method of permeation flux and sorption characteristics in pervaporation through a polydimethylsiloxane(PDMS) memrane was suggested. The amount of sorption and permeation flux of chloroform, toluene, methanol and n-butanol were calculated with this method and compared with this method and compared with experimetal data. The calculated values of permeation flux and the amount of sorption of good solvents, that is, toluene and chloroform were well agreed with the experimental data. The lower the density of PDMS membrane is, the more permeation flux and sorption quantity were increased. However, the experimental data of poor solvents, that is, methanol and n-butanol were no so well agreed with the calculated values. It is shown that the prediction method suggested in this study may be used without experimetnal for the prediction of permeation flux and sorption quantity of the good solvent on PDMS membrane.

  • PDF

Preparation of PVDF/PDMS Composite Membrane and Separation of n-butanol/water Mixtures by Pervaporation (PVDF/PDMS 복합막의 제조와 투과증발을 이용한 n-부탄올/물 혼합물의 분리)

  • Lee, Yong-Taek;Jee, Ki-Yong;Jeon, Eun-Joo;Kim, No-Won
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.212-221
    • /
    • 2009
  • This study focuses on preparation of PVDF/PDMS composite membranes to effectively separate butanol from water-butanol mixture using pervaporation. We prepared various composite membranes by changing PVDF concentration of support layer and PDMS cross-linking condition of active layer. Pervaporation performance was tested by measuring butanol flux and separation factor with various cases of butanol concentration, temperature, and flow rate of feed. As results, performance of our novel PVDF/PDMS membranes surpasses that of PVDF/POMS membrane, manufactured by GKSS (Germany), in term of butanol flux, permeate concentration, and separation factor.

A Transient Separation Behavior of PDMS/PSF Hollow Fiber Membrane Modules for Ethanol-Water Mixtures (PDMS/PSF 중공사 분리막의 시간 의존적 에탄올-물 분리 거동 연구)

  • Muhammad Junaid, Ammar;Arepalli, Devipriyanka;Kim, Min-Zy;Ha, Seong Yong;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2022
  • Many studies on pervaporation (PV) for the separation of dilute alcohols as an alternative to conventional energy-intensive technique of distillation have been conducted earlier. The pervaporation transition behavior of ethanol-water mixtures through the PDMS/PSF membrane is important, in order to understand the mechanism of diffusion process. Therefore, in the present work, transient PV behavior for 50 wt% EtOH/H2O mixture at 50℃ was investigated by using 1194 cm2 PDMS/PSF hollow fiber membrane modules. The overall total flux and the separation factor of all the membrane modules increased initially and then gradually decreased with respect to PV time. The initial increase can be attributed to fact that membrane fibers were dry and it took time to dissolve into the membrane surface, but the subsequent decrease is due to the depletion of ethanol concentration in the feed. Therefore, it was confirmed that the ethanol permeation through a PDMS membrane is governed by the solution-diffusion mechanism.

Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes (PDMS-NaA zeolite 혼합기지분리막에 의한 수소-질소 분리)

  • Kang, Tae Beom;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.295-300
    • /
    • 2015
  • PDMS-NaA zeolite membranes were prepared by adding 0~40 wt% NaA zeolite. Based on SEM observation, NaA zeolite was dispersed in the PDMS-NaA zeolite membranes with $2{\sim}5{\mu}m$. The permeabilities of $H_2$ and $N_2$ gases through PDMS-NaA zeolite membranes increased as NaA zeolite contents increased and $H_2$ gas had better permeabilities than $N_2$. The selectivity ($H_2/N_2$) of PDMS-NaA zeolite membranes increased as NaA zeolite contents increased.

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes (PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구)

  • Ha, Jung Im;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.418-424
    • /
    • 2013
  • The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

Separation of $H_2$ and $N_2$ by PDMS-NaYZeolite Composite Membranes (PDMS-NaYZeolite 막에 의한 수소-질소 분리에 관한 연구)

  • Ha, Jung-Im;Kang, Tae-Beom
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The PDMS-NaYzeolite composite membranes were prepared by adding 1~40 wt% NaYzeolite to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, and SEM. The permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of NaYzeolite contents. The permeability and selectivity ($H_2/N_2$) of PDMS membrane increased as the gas permeation pressure increased. The permeability of the PDMS-NaYzeolite composite membranes increased when 1~10 wt% NaYzeolite was added, and then decreased at higher wt% as NaYzeolite content increased. The selectivity ($H_2/_2$) of PDMS-NaYzeolite composite membranes decreased when 1~2 wt% NaYzeolite was added, and then increased as NaYzeolite content increased. As the $H_2$ permeability increased, the selectivity ($H_2/N_2$) of PDMS-NaYzeolite composite membranes decreased at 0~2 wt% and 10~40 wt% NaYzeolite contents, increased at 2~10 wt% NaYzeolite content.

Pervaporative Recovery of Bio-butanol through Dense- and Composite-type PDMS Membranes (PDMS막을 이용한 바이오 부탄올 분리정제와 투과증발 특성에 관한 연구)

  • Kim, Jeong-Hoon;Ryu, Bi-Ho;Chang, Bong-Jun;Kim, Woo-Nyon
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.157-164
    • /
    • 2009
  • Bio-butanol recovery by pervaporation was performed with dense and composite polydimethylsiloxane (PDMS) membranes. The pervaporative behavior of the membranes was investigated as a function of operation temperature $(20{\sim}40^{\circ}C)$ and membrane thickness $(100{\sim}1{\mu}m)$ using a series of aqueous BtOH model solutions $(1{\sim}5wt%)$. With the increment of the BtOH concentration in feed, the Butanol concentration in permeate, pervaporation selectivity of Butanol over water and Butanol permeation flux increased. As the operating temperature of feed solutions increased, the BtOH concentration in permeate, pervaporation selectivity and permeation flux increased markedly. As the thickness of the PDMS membrane decreased, permeation flux increased but pervaporation selectivity decreased. These results were explained in terms of high solubility and low diffusion resistance of BtOH over water toward hydrophobic and rubbery PDMS membranes.