• Title/Summary/Keyword: PDE-5 inhibitor

Search Result 35, Processing Time 0.023 seconds

Effects of Phosphodiesterase 5 Inhibition with Sildenafil on Atrial Contractile and Secretory Function

  • Quan, He Xiu;Kim, Sun-Young;Jin, Xuan-Shun;Park, Jong-Kwan;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • Selective inhibition of phosphodiesterase (PDE) 5 opened a new therapeutic approach for cardiovascular disorders. Therefore, the effect of PDE5 inhibition on the cardiac function should thoroughly be defined. The purpose of the present study was to define the effects of sildenafil, a selective inhibitor of PDE5, on the atrial cGMP efflux, atrial dynamics, and the release of atrial natriuretic peptide (ANP). By perfusing rabbit left atria to allow atrial pacing, changes in atrial stroke volume and pulse pressure, transmural extracellular fluid translocation, cGMP efflux, and ANP secretion were measured. SIN-I, an NO donor and soluble (s) guanylyl cyclase (GC) activator, and C-type natriuretic peptide (CNP), an activator of particulate (p) GC activator, were used. Sildenafil increased basal levels of cGMP efflux slightly but not significantly. Sildenafil in a therapeutic dose increased atrial dynamics (for atrial stroke volume, $2.84{\pm}1.71%$, n=12, vs $-0.71{\pm}0.86%$, n=21; p<0.05) and decreased ANP release ($-9.02{\pm}3.36%$, n=14, vs $1.35{\pm}3.25%$, n=23; p < 0.05), however, it had no effect on the SIN-1- or CNP-induced increase of cGMP levels. Furthermore, sildenafil in a therapeutic dose accentuated SIN-1-induced, but not CNP-induced, decrease of atrial pulse pressure and ANP release. These data indicate that PDE5 inhibition with sildenafil has a minor effect on cGMP levels, but has a distinct effect on pGC-cGMP- and sGC-cGMP-induced contractile and secretory function.

Udenafil Induces the Hair Growth Effect of Adipose-Derived Stem Cells

  • Choi, Nahyun;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.404-413
    • /
    • 2019
  • Udenafil, which is a $PDE_5$ inhibitor, is used to treat erectile dysfunction. However, it is unclear whether udenafil induces hair growth via the stimulation of adipose-derived stem cells (ASCs). In this study, we investigated whether udenafil stimulates ASCs and whether increased growth factor secretion from ASCs to facilitate hair growth. We found that subcutaneous injection of udenafiltreated ASCs accelerated telogen-to-anagen transition in vivo. We also observed that udenafil induced proliferation, migration and tube formation of ASCs. It also increased the secretion of growth factors from ASCs, such as interleukin-4 (IL-4) and IL12B, and the phosphorylation of ERK1/2 and $NF{\kappa}B$. Furthermore, concomitant upregulation of IL-4 and IL12B mRNA levels was attenuated by ERK inhibitor or $NF{\kappa}B$ knockdown. Application of IL-4 or IL12B enhanced anagen induction in mice and increased hair follicle length in organ culture. The results indicated that udenafil stimulates ASC motility and increases paracrine growth factor, including cytokine signaling. Udenafil-stimulated secretion of cytokine from ASCs may promote hair growth via the ERK and $NF{\kappa}B$ pathways. Therefore, udenafil can be used as an ASC-preconditioning agent for hair growth.

Protective Effects of Ginkgolide B on Reperfusion of the Isolated Perfused Guinea Pig Heart (Ginkgolide B의 Guinea Pig 적출 심장에 대한 허혈 유발후 Reperfusion시의 보호 작용에 관한 연구)

  • Kwon, Kwang-il;Lee, Young-sin;Lee, Jae-heung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1993
  • The cardiac effects of PAF antagonist Ginkgolide B(BN 52051) have been investigated on the isolated perfused guinea pig hearts maintained at the constant hydrostatic perfusion pressure of 80 cm water. PDE(Phosphodiesterase) inhibitor KR-30289 was used as a positive control to see the positive inotropic effects on the perfused hearts. In this expriments, Ginkgolide $B(10^{-5}-SM)$ showed negative inotropic effects by decreasing of LVP, LVDP, LV dp/dt, HR and RPP(Rate Pressure Product). Ginkgolide B also decreased the number of extrasystole by $51.9\%(from\;23.75\pm9.22/min\;to\;11.43\pm435/min)$ induced by global ischemia and reperfusion. The rate, [-dp/dt]/[+dp/dt] increased in preischemia but decreased in postischemia. 1n the separated study the injection of 1ml of Ginkgolide B$(10^{-4M})$ on the isolated heart, increased coronary flow(CF) by $11.8\%(from\;7.5\pm7.65ml/min\;to\;8.5\pm0.29ml/min)$ and decreased the number of extrasystole by $47.6\%(from\;21\pm5.92/min\;to\;11\pm5.27/min)$. In conclusion, Ginkgolide B showed antiarrhythmic and protective effects by decreasing the number of extrasystole and by increasing the coronary flow, respectively.

  • PDF

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.