• Title/Summary/Keyword: PCbased Control

Search Result 2, Processing Time 0.021 seconds

Flowchart Programming Environment for Process Control (PC 기반 제어기를 위한 Flowchart 활용 프로그래밍 환경의 개발)

  • 이희원;김기원;민병권;이상조;김찬봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1240-1243
    • /
    • 2004
  • For agile production methods, manufacturing system requires development of a motion controller which has flexibility of general-purpose motion controller and productivity of specialized-purpose one. In this study we developed the Flowchart Programming development environment for Motion language and Process Control. The controller designed on this environment can be used as a general purpose motion controller of a machining tool. Design of control programming based on a flowchart has the advantage of reducing the time consumed and intuitive interface for users. We create the solution with the Microsoft Visio for the flowchart-based platform and OPC for the process communication..

  • PDF

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.